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Introduction

For many people, physics holds a lot of terror. And Physics II courses do 
introduce a lot of mind-blowing concepts, such as the ideas that mass 

and energy are aspects of the same thing, that light is just a mix of electric 
and magnetic fields, and that every electron zipping around an atom cre-
ates a miniature magnet. In Physics II, charges jump, light bends, and time 
stretches — and not just because your instructor lost the class halfway 
through the lecture. Throw some math into the mix, and physics seems to get 
the upper hand all too often. And that’s a shame, because physics isn’t your 
enemy — it’s your ally.

The ideas may have come from Albert Einstein and other people who man-
aged to get laws and constants and units of measurement named after them, 
but you don’t have to be a genius to understand Physics II. After all, it’s only 
partially rocket science — and those are ultra-cool, nearing-the-speed-of-light 
rockets.

Many breakthroughs in the field came from students, researchers, and others 
who were simply curious about their world, who did experiments that often 
didn’t turn out as expected. In this book, I introduce you to some of their 
discoveries, break down the math that describes their results, and give you 
some insight into how things work — as physicists understand it.

About This Book
Physics II For Dummies is for the inquiring mind. It’s meant to explain hun-
dreds of phenomena that you can observe all around you. For example, how 
does polarized light really work? Was Einstein really right about time dilation 
at high speeds? Why do the electromagnets in electric motors generate mag-
netism? And if someone hands you a gram of radioactive material with a half-
life of 22,000 years, should you panic?

To study physics is to study the world. Your world. That’s the kind of per-
spective I take in this book. Here, I try to relate physics to your life, not the 
other way around. So in the upcoming chapters, you see how telescopes and 
microscopes work, and you find out what makes a properly cut diamond so 
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brilliant. You discover how radio antennas pick up signals and how magnets 
make motors run. You see just how fast light and sound can travel, and you 
get an idea of what it really means for something to go radioactive.

When you understand the concepts, you see that the math in physics isn’t 
just a parade of dreadful word problems; it’s a way to tie real-world measure-
ments to all that theory. Rest assured that I’ve kept the math in this book 
relatively simple — the equations don’t require any knowledge beyond alge-
bra and trigonometry.

Physics II For Dummies picks up where a Physics I course leaves off — after 
covering laws of motion, forces, energy, and thermodynamics. Physics I and 
Physics II classes have some overlap, so you do find info on electricity and 
magnetism in both this book and in Physics For Dummies. But in Physics II For 
Dummies, I cover these topics in more depth.

A great thing about this book is that you decide where to start and what to 
read. It’s a reference you can jump into and out of at will. Just head to the 
table of contents or the index to find the information you want.

Conventions Used in This Book
Some books have a dozen stupefying conventions that you need to know 
before you can start reading. Not this book. All you need to know is the 
following:

 ✓ New terms are given in italics, like this, and are followed by a definition.

 ✓ Variables, like m for mass, are in italics. If you see a letter or abbrevia-
tion in a calculation and it isn’t italicized, you’re looking at a unit of mea-
surement; for instance, 2.0 m is 2.0 meters.

 ✓ Vectors — those items that have both a magnitude and a direction — 
are given in bold, like this: B.

And those are all the conventions you need to know!

What You’re Not to Read
Besides the main text of the book, I’ve included some extra little elements 
that you may find enlightening or interesting: sidebars and paragraphs 
marked with Technical Stuff icons. The sidebars appear in shaded gray 
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boxes, and they give you some nice little examples or tell stories that add 
a little color or show you how the main story of physics branches out. The 
Technical Stuff paragraphs give you a little more technical information on 
the matter at hand. You don’t need this to solve problems; you may just be 
curious.

If you’re in a rush, you can skip these elements without hurting my feelings. 
Without them, you still get the main story.

Foolish Assumptions
In this book, I assume the following:

 ✓ You’re a student who’s already familiar with a Physics I text like Physics 
For Dummies. You don’t have to be an expert. As long as you have a 
reasonable knowledge of that material, you’ll be fine here. You should 
understand ideas such as mass, velocity, force, and so on, even if you 
don’t remember all the formulas.

 ✓ You’re familiar with the metric system, or SI (the International System of 
Units). You can convert between units of measurement, and you under-
stand how to use metric prefixes. I include a review of working with mea-
surements in Chapter 2.

 ✓ You know basic algebra and trigonometry. I tell you what you need in 
Chapter 2, so no need to worry. This book doesn’t require any calculus, 
and you can do all the calculations on a standard scientific calculator.

How This Book Is Organized
Like physics itself, this book is organized into different parts. Here are the 
parts and what they’re all about.

Part I: Understanding Physics 
Fundamentals
Part I starts with an overview of Physics II, introducing the goals of physics and 
the main topics covered in a standard Physics II course. This part also brings 
you up to speed on the basics of Physics I — just what you need for this book. 
You can’t build without a foundation, and you get the foundation you need here.
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Part II: Doing Some Field Work: 
Electricity and Magnetism
Electricity and magnetism are a big part of Physics II. Over the years, physi-
cists have done a great job of explaining these topics. In this part, you see 
both electricity and magnetism, including info on individual charges, AC 
(alternating current) circuits, permanent magnets, and magnetic fields — and 
perhaps most importantly, you see how electricity and magnetism connect to 
create electromagnetic waves (as in light).

Part III: Catching On to Waves: 
The Sound and Light Kinds
This part covers waves in general, as well as light and sound waves. Of the 
two, light is the biggest topic — you see how light waves interact and inter-
fere with each other, as well as how they manage when going through single 
and double slits, bouncing off objects, passing through glass and water, 
and doing all kinds of other things. The study of optics includes real-world 
objects such as lenses, mirrors, cameras, polarized sunglasses, and more.

Part IV: Modern Physics
This part brings you into the modern day with the theory of special relativity, 
the particle-wave duality of matter, and radioactivity. Relativity is a famous 
one, of course, and you see a lot of Einstein in this part. You also see many 
other physicists who chipped in on the discussion of matter’s travels as 
waves. You read all about radioactivity and atomic structure, too.

Part V: The Part of Tens
The chapters in this part cover ten topics in rapid succession. You take a 
look at ten physics experiments that changed the world, leading to discover-
ies in everything from special relativity to radioactivity. You also look at ten 
online calculators that can assist you in solving physics problems.
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Icons Used in This Book
You find icons in this book, and here’s what they mean:

 This icon marks something to remember, such as a law of physics or a particu-
larly important equation.

 Tips offer ways to think of physics concepts that can help you better under-
stand a topic. They may also give you tips and tricks for solving problems.

 This icon means that what follows is technical, insider stuff. You don’t have to 
read it if you don’t want to, but if you want to become a physics pro (and who 
doesn’t?), take a look.

Where to Go from Here
In this book, you can jump in anywhere you want. You can start with electric-
ity or light waves or even relativity. But if you want the full story, start with 
Chapter 1. It’s just around the corner from here. Happy reading!

If you don’t feel comfortable with the level of physics taken for granted from 
Physics I, check out a Physics I text. I can recommend Physics For Dummies 
wholeheartedly.
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Understanding 
Physics 

Fundamentals

04_538067-pp01.indd   704_538067-pp01.indd   7 6/1/10   8:07 PM6/1/10   8:07 PM



In this part . . .

In this part, you make sure you’re up to speed on the 
skills you need for Physics II. You start with an overview 

of the topics I cover in this book. You also review Physics I 
briefly, making sure you have a good foundation in the 
math, measurements, and main ideas of basic physics.
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Chapter 1

Understanding Your World: 
Physics II, the Sequel

In This Chapter
▶ Looking at electricity and magnetism

▶ Studying sound and light waves

▶ Exploring relativity, radioactivity, and other modern physics

Physics is not really some esoteric study presided over by guardians 
who make you take exams for no apparent reason other than cruelty, 

although it may seem like it at times. Physics is the human study of your 
world. So don’t think of physics as something just in books and the heads of 
professors, locking everybody else out.

Physics is just the result of a questioning mind facing nature. And that’s 
something everyone can share. These questions — what is light? Why do 
magnets attract iron? Is the speed of light the fastest anything can go? — 
concern everybody equally. So don’t let physics scare you. Step up and claim 
your ownership of the topic. If you don’t understand something, demand that 
it be explained to you better — don’t assume the fault is with you. This is the 
human study of the natural world, and you own a piece of that.

Physics II takes up where Physics I leaves off. This book is meant to cover — 
and unravel — the topics normally covered in a second-semester intro physics 
class. You get the goods on topics such as electricity and magnetism, light 
waves, relativity (the special kind), radioactivity, matter waves, and more. 
This chapter gives you a sneak preview.
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Getting Acquainted with Electricity 
and Magnetism

Electricity and magnetism are intertwined. Electric charges in motion (not 
static, nonmoving charges) give rise to magnetism. Even in bar magnets, the 
tiny charges inside the atoms of the metal cause the magnetism. That’s why 
you always see these two topics connected in Physics II discussions. In this 
section, I introduce electricity, magnetism, and AC circuits.

Looking at static charges 
and electric field
Electricity is a very big part of your world — and not just in lightning and 
light bulbs. The configuration of the electric charges in every atom is the 
foundation of chemistry. As I note in Chapter 14, the arrangement of elec-
trons gives rise to the chemical properties of matter, giving you everything 
from metals that shine to plastics that bend. That electron setup even gives 
you the very color that materials reflect when you shine light on them.

Electricity studies usually start with electric charges, particularly the force 
between two charges. The fact that charges can attract or repel each other 
is central to the workings of electricity and to the structure of the atoms that 
make up the matter around you. In Chapter 3, you see how to predict the 
exact force involved and how that force varies with the distance separating 
the two charges.

Electric charges also fill the space around them with electric field — a fact 
familiar to you if you’ve ever felt the hairs on your arm stir when you’ve 
unloaded clothes from a dryer. Physicists measure electric field as the force 
per unit charge, and I show you how to calculate the electric field from 
arrangements of charges.

Next up is the idea of electric potential, which you know as voltage. Voltage is 
the work done per unit charge, taking that charge between two points. And 
yes, this is exactly the kind of voltage you see stamped on batteries.

With those three quantities — force, electric field, and voltage, you nail down 
static electric charges.
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Moving on to magnetism
What happens when electric charges start to move? You get magnetism, 
that’s what. Magnetism is an effect of electric charge that’s related to but 
distinct from the electric field; it exists only when charges are in motion. Give 
an electron a push, send it sailing, and presto! You’ve got magnetic field. 
The idea that moving electric charges cause magnetic field was big news in 
physics — that fact’s not obvious when you simply work with magnets.

Electric charges in motion form a current, and various arrangements of elec-
tric current create different magnetic fields. That is, the magnetic field you 
see from a single current-bearing wire is different from what you see from a 
loop of current — let alone a whole bunch of loops of current, an arrange-
ment known as a solenoid. I show you how to predict magnetic field in 
Chapter 4.

Not only do moving electric charges give rise to magnetic fields, but magnetic 
fields also affect moving electric charges. When an electric charge moves 
through a magnetic field, that charge feels a force on it at right angles to the 
magnetic field and the direction of motion. The upshot is that left to them-
selves, moving charges in uniform magnetic fields travel in circles (an idea 
chemists appreciate, because that’s what allows a mass spectrometer to sort 
out the chemical makeup of a sample). How big is the circle? How does the 
radius of the circle correlate with the speed of the charge? Or with the mag-
nitude of the charge? Or with the strength of the magnetic field? Stay tuned. 
The answers to all these questions are coming up in Chapter 4.

AC circuits: Regenerating current 
with electric and magnetic fields
Students often meet electrical circuits in Physics I (you can read about 
simple direct current [DC] circuits in Physics For Dummies). In Chapter 5, you 
get the Physics II version: You take a look at what happens when the voltage 
and current in a circuit fluctuate in time in a periodic way, giving you alter-
nating voltage and currents. You also encounter some new circuit elements, 
the inductor and capacitor, and see how they behave in AC circuits. Many of 
the electrical devices that people use every day depend on such elements in 
alternating currents.
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In reading about the inductor, you also encounter one of the fundamental 
laws that relates electric and magnetic fields: Faraday’s law, which explains 
how a changing magnetic field induces a voltage that generates its own mag-
netic field. This law doesn’t just apply to inductors; it applies to all electric 
and magnetic fields, wherever they occur in the universe!

Riding the Waves
Waves are a huge topic in Physics II. A wave is a traveling disturbance that 
carries energy. If the disturbance is periodic, the amount of disturbance 
repeats in space and time over a distance called the wavelength and a time 
called the period. Chapter 6 delves into the workings of waves so you can see 
the relationships among the wave’s speed, wavelength, and frequency (the 
rate at which cycles pass a particular point). In the rest of the chapters in 
Part III of this book, you explore particular types of waves, including electro-
magnetic waves (such as light and radio waves) and sound.

Getting along with sound waves
Sound is just a wave in air, and the various interactions of sound waves are 
just a result of the behaviors shared by all waves. For instance, sound waves 
can reflect off a surface — just let sound waves collide with walls and listen 
for the echo. Sound waves also interfere with other waves, and you can hear 
the effects — or silence, as the case may be. These two kinds of interaction 
form the basis for understanding the harmonic tones in music.

The qualities of a sound, such as pitch and loudness, depend on the proper-
ties of the wave. As you may have noticed by hearing the change of pitch 
of a siren on a police car as it passes by, pitch changes when the source or 
the listener moves. This is called the Doppler effect. You can take this to the 
extreme by examining the shock wave that happens when objects move very 
quickly through the air, breaking the sound barrier. This is the origin of the 
sonic boom. I cover all this and more in Chapter 7.

Figuring out what light is
You focus on light a good deal in Physics II. How light works is now well-
known, but that wasn’t always the case. Imagine the excitement James Clerk 
Maxwell must’ve felt when the speed of light suddenly jumped out of his 
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equations and he realized that by combining electricity and magnetism, 
he’d come up with light waves. Before that, light waves were a mystery — 
what made them up? How could they carry energy?

After Maxwell, all that changed, because physicists now knew that light was 
made up of electrical and magnetic oscillations. In Chapter 8, you follow in 
Maxwell’s footsteps to come up with his amazing result. There, you see how 
to calculate the speed of light using two entirely different constants having to 
do with how well electric and magnetic fields can penetrate empty space.

As a wave, light carries energy as it travels, and physicists know how to 
calculate just how much energy it can carry. That amount of energy is tied 
to the magnitude of the wave’s electric and magnetic components. You get 
a handle on how much power that light of a certain intensity can carry in 
Chapter 8.

Of course, light is only the visible portion of the electromagnetic spectrum — 
and it’s a small part at that. All kinds of electromagnetic radiation exist, clas-
sified by the frequency of the waves: X-rays, infrared light, ultraviolet light, 
radio waves, microwaves, even ultra-powerful gamma waves.

Reflection and refraction: Bouncing 
and bending light
Light’s interaction with matter makes it interesting. For instance, when light 
interacts with materials, some light is absorbed and some reflected. This pro-
cess gives rise to everything you see around you in the daily world.

Reflected light obeys certain rules. Primarily, the angle of incidence of a light 
ray — that is, the angle at which the light strikes the surface (measured 
from a line pointing straight out of that surface) — must equal the angle of 
reflection — the angle at which the light leaves the surface. Knowing how 
light is going to bounce off objects is essential to all kinds of devices, from 
the periscopes in submarines to telescopes, fiber optics, and even the reflec-
tors that the Apollo astronauts placed on the moon. Chapter 10 covers the 
rules of reflection.

Light can also travel through materials, of course (or people wouldn’t have 
windows, sunglasses, stained glass, and a lot more). When light enters one 
material from another, it bends, a process known as refraction — which is a 
big topic in Chapter 9. The amount the light bends depends on the materials 
involved, as measured by their indexes of refraction. That’s useful to know in 
all kinds of situations. For example, when lens-makers understand how light 
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bends when it enters and leaves a piece of glass, they can shape the glass to 
produce images. You take a look through lenses next.

Searching for images: Lenses and mirrors
If you’re eager to look at the practical applications of Physics II topics, you’ll 
probably enjoy optics. Here, you work with lenses and mirrors, allowing you 
to explore the workings of telescopes, cameras, and more.

Focusing on lenses
Lenses can focus light, or they can diverge it. In either case, you can get an 
image (sometimes upright, sometimes upside down, sometimes bigger than 
the object, sometimes smaller). The image is either virtual or real. In a real 
image, the light rays converge, so you can put a screen at the image location 
and see the image on the screen (like at the movies). A virtual image is an image 
from which the light appears to diverge, such as an image in a magnifying glass.

Armed with a little physics, you have the lens situation completely under 
control. If you’re visually inclined, you can find info on the image using your 
drawing skills. I explain how to draw ray diagrams, which show how light 
passes through a lens, in Chapter 9.

You can also get numeric on light passing through lenses. The thin-lens 
equation gives you all you need to know here about the object and image, 
and you can even derive the magnification of lenses from that equation. So 
given a certain lens and an object a certain distance away, you can predict 
exactly where the image will appear and how big it will be (and whether it’ll 
be upside down or not).

If one lens is good, why not try two? Or more? After all, that’s the idea behind 
microscopes and telescopes. You get the goods on such optical instruments 
in Chapter 9, and if you want, you can be designing microscopes and tele-
scopes in no time.

All about mirrors/srorrim tuoba llA
You can get numeric on the way mirrors reflect light, whether a mirror is 
flat or curved. For instance, if you know just how much a mirror curves and 
where an object is with reference to the mirror, you can predict just where 
the image of the object will appear.

In fact, you can do more than that — you can calculate whether the image 
will be upright or upside down. You can calculate just how high it will be 
compared to the original object. You can even calculate whether the image 
will be real (in front of the mirror) or virtual (behind the mirror). I discuss 
mirrors in Chapter 10.
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Calling interference: When 
light collides with light
Not only can light rays interact with matter; they can also interact with other 
light rays. That shouldn’t sound too wild — after all, light is made up of elec-
tric and magnetic components, and those components are what interact with 
the electric fields in matter. So why shouldn’t those components also interact 
with similar electric and magnetic components from other light rays?

When the electric component of a light ray is at its maximum and it encounters a 
light ray with its electric component at a minimum, the two components cancel 
out. Conversely, if the two light rays happen to hit just where the electric compo-
nents are at a maximum, they add together. The result is that when light collides 
with light, you can get diffraction patterns — arrangements of light and dark bands, 
depending on whether the net result is at a maximum or minimum. In Chapter 11, 
you see how to calculate what the diffraction patterns look like for an assortment 
of different light sources, all of which has been borne out by experiment.

Branching Out with Modern Physics
The 20th century saw an explosion of physics topics, and collectively, those 
topics are called modern physics. Some revolutionary ideas — such as quantum 
mechanics and Einstein’s theory of special relativity — changed the foundations 
of how physicists saw the universe; Isaac Newton’s mechanics didn’t always 
apply. As physicists delved deeper into the workings of the world, they found 
more and more powerful ideas, which allowed them to describe exponentially 
more about the world. This led to developments in technology, which meant 
that experiments could probe the universe ever more minutely (or expansively).

Most people have heard of relativity and radioactivity, but you may not be 
familiar with other topics, such as matter waves (the fact that when matter 
travels, it exhibits many wave-like properties, just like light) or blackbody 
radiation (the study of how warm objects emit light). I introduce you to some 
of these modern-physics ideas in this section.

Shedding light on blackbodies: Warm 
bodies make their own light
If you’ve ever seen an incandescent light bulb at work (or you’ve glanced 
at the sun), you know that hot things emit light. In fact, any body with any 
warmth at all emits electromagnetic waves, such as light.
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In particular, physicists can calculate the wavelength of the electromagnetic 
waves where the emitted spectrum peaks, given an object’s temperature. 
This topic is intimately tied up with photons — that is, particles of light — 
and you can predict how much energy a photon carries, given its wavelength. 
Details are in Chapter 13.

Speeding up with relativity: Yes, E = mc2

Here it is at last: special relativity and Einstein. What, exactly, does E = mc2 
mean? It means that matter and energy can be considered interchangeable, 
and it gives the energy-equivalent of a mass m at rest. That is, if you have a 
tomato that suddenly blows up, converting all its mass into energy (not a 
likely event), you can calculate how much energy would be released. (Note: 

Converting 100 percent of a tomato’s mass into pure energy would create a 
huge explosion; a nuclear explosion converts only a small percentage of the 
matter involved into energy.)

Besides E = mc2, Einstein also predicted that at high speeds, time stretches 
and length contracts. That is, if a rocket ship passes you traveling at 99 per-
cent of the speed of light, it’ll appear contracted along the direction of travel. 
And time on the rocket ship passes more slowly than you’d expect, using 
a clock at rest with respect to you. So if you watch a rocket ship pass by at 
high speed, do clocks tick more slowly on the rocket ship than they do for 
you, or is that some kind of trick? No trick — in fact, the people on the rocket 
ship age more slowly than you do, too.

Airplanes travel at much slower speeds, but the same effect applies to them — 
and you can calculate just how much younger a jet passenger is than you 
(but here’s a disappointing tip to people searching for the fountain of youth: 
It’s an immeasurably small amount of time). You explore special relativity in 
Chapter 12.

Assuming a dual identity: Matter 
travels in waves, too
Light travels in waves — that much doesn’t take too many people by surprise. 
But the fact that matter travels in waves can be a shocker. For example, take 
your average electron, happily speeding on its way. In addition to exhibiting 
particle-like qualities, that electron also exhibits wave-like qualities — even 
so much so that it can interfere with other electrons in flight, just as two light 
rays can, and produce actual diffraction patterns.
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And electrons aren’t the only type of matter that has a wavelength. Everything 
does — pizza pies, baseballs, even tomatoes on the move. You wrap your 
mind around this when I discuss matter waves in Chapter 13.

Meltdown! Knowing the 
αβγ’s of radioactivity
Nuclear physics has to do with, not surprisingly, the nucleus at the center of 
atoms. And when you have nuclear physics, you have radioactivity.

In Chapter 15, you find out what makes up the nucleus of an atom. You see 
what happens when nuclei divide (nuclear fission) or combine (nuclear 
fusion) — and in particular, you see what happens when nuclei decay by 
themselves, a process known as radioactivity.

Not all radioactive materials are equally radioactive, of course, and half-life — 
the time it takes for half of a sample to decay — is one good measure of 
radioactivity. The shorter the half-life, the more intensely radioactive the 
sample is.

You encounter all the different types of radioactivity — alpha, beta, and 
gamma — in the tour of the subject in Chapter 15.
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Chapter 2

Gearing Up for Physics II
In This Chapter
▶ Mastering units and math conventions

▶ Reviewing foundational Physics I concepts

This chapter prepares you to jump into Physics II. If you’re already a 
physics ace, there’s no need to get bogged down here — just fly into the 

physics topics themselves, starting with the next chapter. But if you’re not 
fast-tracked for the physics Nobel Prize, it wouldn’t hurt to scan the topics 
here, at least briefly. Doing so can save you a lot of time and frustration in the 
chapters coming up.

Math and Measurements: Reviewing 
Those Basic Skills

Physics excels at measuring and predicting the real world, and those pre-
dictions often come though math. So to be a physicsmeister, you have to 
have certain skills down cold. And because this is Physics II, I assume that 
you’re somewhat familiar with the world of physics and some of those basics 
already. You look at those skills here in refresher form (if you’re unclear 
about anything, check out a book like Physics For Dummies (Wiley) to get up 
to speed).

The following skills are pretty basic; you can’t get through Physics I without 
them. But make sure you have at least a passing acquaintance with the topics 
in this section — especially if it’s been quite some time since Physics I.
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Using the MKS and CGS 
systems of measurement
The most common measurement systems in physics are the centimeter-gram-
second (CGS) and meter-kilogram-second (MKS) systems. The MKS system 
is more common. For reference, Table 2-1 lists the primary units of measure-
ment, along with their abbreviations in parentheses, for both systems.

Table 2-1 Metric Units of Measurement

Type of Measurement CGS Unit MKS Unit

Length Centimeters (cm) Meters (m)

Mass Grams (g) Kilograms (kg)

Time Seconds (s) Seconds (s)

Force Dynes (dyn) Newtons (N)

Energy (or work) Ergs (erg) Joules (J)

Power Ergs/second (erg/s) Watts (W) or joules/second (J/s)

Pressure Baryes (Ba) Pascals (Pa) or newtons/square 
meter (N/m2)

Electric current Biots (Bi) Amperes (A)

Magnetic field Gausses (G) Teslas (T)

Electric charge Franklins (Fr) Coulombs (C)

These are the primary measuring sticks that physicists use to measure the 
world with, and that measuring process is where physics starts. Other mea-
suring systems, such as the foot-pound-second (FPS) system, are around 
as well, but the CGS and MKS systems are the main ones you see in physics 
problems.

Making common conversions
Measurements don’t always come in the units you need them in, so doing 
physics can involve a lot of conversions. For instance, if you’re using the 
meter-kilogram-second system (see the preceding section), you can’t plug 
measurements in centimeters or feet into your formula — you need to get 
them in the right units first. In this section, I show you some values that are 
equal to each other and an easy way to know whether to multiply or divide 
when doing conversions.

06_538067-ch02.indd   2006_538067-ch02.indd   20 6/1/10   8:08 PM6/1/10   8:08 PM



21 Chapter 2: Gearing Up for Physics II

Looking at equal units
Converting between CGS (centimeter-gram-second) and MKS (meter-kilogram-
second) units happens a lot in physics, so here’s a list of equal values of MKS 
and CGS units for reference — come back to this as needed:

 ✓ Length: 1 meter = 100 centimeters

 ✓ Mass: 1 kilogram = 1,000 grams

 ✓ Force: 1 newton = 105 dynes

 ✓ Energy (or work): 1 joule = 107 ergs

 ✓ Pressure: 1 pascal = 10 barye

 ✓ Electric current: 1 ampere = 0.1 biot

 ✓ Magnetism: 1 tesla = 104 gausses

 ✓ Electric charge: 1 coulomb = 2.9979 × 109 franklins

Converting back and forth between MKS and CGS systems is easy, but what 
about other conversions? Here are a some handy conversions that you can 
come back to as needed. First, for length:

 ✓ 1 meter = 1,000 millimeters

 ✓ 1 inch = 2.54 centimeters

 ✓ 1 meter = 39.37 inches

 ✓ 1 mile = 5,280 feet = 1.609 kilometers

 ✓ 1 kilometer = 0.62 miles

 ✓ 1 angstrom (Å) = 10–10 meters

Here are some conversions for mass:

 ✓ 1 slug (foot-pound-second system) = 14.59 kilogram

 ✓ 1 atomic mass unit (amu) = 1.6605 × 10–27 kilograms

These are for force:

 ✓ 1 pound = 4.448 newtons

 ✓ 1 newton = 0.2248 pounds

Here are some conversions for energy:

 ✓ 1 joule = 0.7376 foot-pounds

 ✓ 1 British thermal unit (BTU) = 1,055 joules
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 ✓ 1 kilowatt-hour (kWh) = 3.600 × 106 joules

 ✓ 1 electron-volt = 1.602 × 10-19 joules

And here are conversions for power:

 ✓ 1 horsepower = 550 foot-pounds/second

 ✓ 1 watt = 0.7376 foot-pounds/second

Using conversion factors: From one unit to another
If you know that two values are equal to each other (see the preceding 
section), you easily use them to convert from one unit of measurement to 
another. Here’s how it works.

First note that when two values are equal, you can write them as a fraction 
that’s equal to 1. For instance, suppose you know that there are 0.62 miles 
in a kilometer:

1 km = 0.62 miles

You can write this as

 or 

Each of these fractions is a conversion factor. If you need to go from miles to 
kilometers or kilometers to miles, you can multiply by a conversion factor 
so that the appropriate units cancel out — without changing the value of the 
measurement, because you’re multiplying by something equal to 1.

For instance, suppose you want to convert 30 miles to kilometers. First, write 
30 miles as a fraction:

Now you need to multiply by a conversion factor. But which version of the 
fraction do you use? Here, miles is in the numerator, so to get the miles to 
cancel out, you want to multiply a fraction that has miles in the denomina-
tor. Because , you can multiply 30 miles by that fraction without 
changing the measurement. Then the miles on the bottom cancels the miles 
on the top:
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 Always arrange your conversion factors so that you cancel out the part of the 
unit you want to swap out for something else. Each unit that you don’t want in 
your final answer has to appear in both a numerator and a denominator.

Sometimes you can’t do a conversion in one step, but you can string together 
a series of conversion factors. For instance, here’s how you can set up a 
problem to convert 30 miles per hour to meters per second. Notice how I 
multiply by a series of fractions, making sure that every unit I want to cancel 
out appears in the numerator of one fraction and the denominator of another. 

Doing speedy metric conversions
In the metric system, one unit can be used as a basis for a broad range of 
units by adding a prefix (Table 2-2 shows some of the most common pre-
fixes). Each prefix multiplies the base unit by a power of 10. For example, 
kilo- says that the unit is 1,000 times (103 times) larger than the base unit, 
so a kilometer is 1,000 meters. And milli- means the unit is 0.001 times (10–3) 
smaller than the base unit. This means that converting from one metric unit 
to another is usually a matter of moving the decimal point.

Table 2-2 Metric Prefixes

Prefix Symbol Meaning (Decimal) Meaning (Power of Ten)

Nano- n 0.000000001 10–9

Micro- μ 0.000001 10–6

Milli- m 0.001 10–3

Centi- c 0.01 10–2

Kilo- k 1,000 103

 By finding the difference in exponents on the power of 10 of your original units 
and the units you want to convert to, you can figure out how many places to 
move the decimal point.

For instance, say you have a distance of 20.0 millimeters, and you’d prefer 
to express it in centimeters. You know that 1 millimeter is 10–3 meters, and 
1 centimeter is 10–2 meters (as Table 2-2 shows). If you find the difference 
in exponents, you see that –3 –(–2) = –1. The answer is negative, so you just 
have to move the decimal point one place to the left (for a positive answer, 
you move it to the right). Thus, 20.0 millimeters is equal to 2.00 centimeters.
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Using temperature-conversion equations
You can use the following equations to convert between the different units of 
temperature:

 ✓ Kelvin temperature = Celsius temperature + 273.15

 ✓ Celsius temperature = 5⁄9(Fahrenheit temperature – 32°)

Keeping it short with scientific notation
Physicists often delve into the realms of the very small and the very large. 
Fortunately, they also have a very neat way of writing very large and very 
small numbers: Scientific notation. Essentially, you write each number as a 
decimal (with only one digit to the left of the decimal point) multiplied by 10 
raised to a power.

Say you want to write down the speed of light in a vacuum, which is about 
three hundred million meters per second. This is a three followed by eight 
zeros, but you can write it as just a 3.0 multiplied by 108:

300,000,000 m/s = 3.0 × 108 m/s

You can write small numbers by using a negative power to shift the decimal 
point to the left. So if you have a distance of 4.2 billionths of a meter, you 
could write it as

0.0000000042 m = 4.2 × 10–9 m

Note how the 10–9 moves the decimal point of the 4.2 nine places to the left.

Brushing up on basic algebra
To do physics, you need to know basic algebra. You’re going to be slinging 
some equations around, so you should be able to work with variables and 
move them from one side of an equation to the other as needed, no problem.

 You don’t need to be bogged down or daunted by the formulas in physics — 
they’re only there to help describe what’s going on in the real world.  When 
you see a new formula, consider how the different parts of the equation relate 
to the physical situation it describes.

Take a simple example — the equation for the speed, v, of an object that 
covers a distance Δx in a time Δt (Note: The symbol Δ means “change in”):
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Before you go any further, try relating the parts of this equation to what you 
intuitively understand about speed. You can see in the equation that if Δx 
increases, then v increases — if you cover a greater distance in a given time, 
then you’re traveling faster. You can also see that if Δt (in the denominator of 
the fraction) increases, then v decreases — if it takes you longer to cover a 
given distance, then you’re moving more slowly.

If you need to, you can rearrange an equation algebraically to isolate the part 
you’re interested in. That way, you can get a feel for how other variables 
affect each other. For instance, see what the equation means for travel time 
by rearranging it to isolate Δt:

Now you can see that Δt increases as Δx increases, and Δt decreases as v 
increases. This just means that travel time increases if you have to travel far-
ther and decreases if you travel faster.

Using some trig
You work with some angles to this book — such as those you have to figure 
out when light bounces off mirrors or bends in lenses. To handle angles and 
related distances, you need some trigonometry.

Pretty much everything in trig comes down to the right triangle. For example, 
take a look at the right triangle in Figure 2-1. The two shorter sides, or legs, 
are called x and y (because they lie along the x- and y-axes respectively), 
and the longest side, across from the 90° angle, is the hypotenuse. One of the 
other internal angles is marked θ.

 

Figure 2-1: 
The two legs 

(x and y) 
and hypot-

enuse (h) 
of a right 
triangle.

 

h

x

y

θ

Here’s one important formula to know: the Pythagorean theorem. It relates 
the lengths of x, y, and h, so given the lengths of two sides, you can find the 
length of the third:

x2 + y2 = h2
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 To work with angles (such as θ), you need the trig functions sine, cosine, and 
tangent. To find the values of trig functions, just divide one side of the triangle 
by another. Here’s what it looks like:

 ✓ Sine: 

 ✓ Cosine: 

 ✓ Tangent: 

Note that these equations relate any two sides of a right triangle to the angle 
that’s between the hypotenuse and one of the other sides. So if you know θ 
and one of the other sides, you can use some algebra (and your calculator) to 
find the length of any other side.

 To find the angle θ, you can go backward with inverse sines, cosines, and tan-
gents, which are written like this: sin–1, cos–1, and tan–1. If you make the appro-
priate fraction out of two known sides of a triangle and take the inverse sine 
of that (sin–1 on your calculator), it’ll give you back the angle itself. Here’s how 
the inverse trig functions work (see Figure 2-1 for which sides are x, y, and h):

 ✓ Inverse sine: 

 ✓ Inverse cosine: 

 ✓ Inverse tangent: 

Physicists use sine and cosine functions to describe real-world waves and alter-
nating current and voltage. I introduce waves in Chapter 6, and I cover alternat-
ing current (AC circuits) in Chapter 5.

Using significant digits
You may be surprised to hear that physics isn’t an exact science! It can be 
pretty accurate, but nothing is ever measured perfectly. The more accurately 
the quantity is measured, the more digits you know. The digits you know 
are the significant figures. For instance, a stopwatch measurement of 11.26 
seconds has four significant figures. Here are a few guidelines for figuring out 
what’s significant:
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 ✓ For a decimal less than 1, everything that follows the first nonzero digit 
is significant. For example, 0.0040 has two significant digits.

 ✓ For a decimal greater than 1, all digits, including zeros after the decimal 
point, are significant. For instance, 20.10 has four significant digits.

 ✓ For a whole number, the non-zero digits are significant. Any number of 
trailing zeros also may be significant.

 So how do you show the accuracy of a measurement such as 1,000 meters, 
which ends in zeros? You may know anywhere between one and four digits 
from your measurements. The best way to clear this up is to use scientific 
notation. For instance, if you write 1,000 as 1.000 × 103, with three zeroes after 
the decimal point, the number has four significant figures — you measured 
to the nearest meter. If you write it as 1.00 × 103, with two zeroes after the 
decimal point, the number has three significant figures — you measured to 
the nearest ten meters. (For info on scientific notation, see the earlier section 
“Keeping it short with scientific notation.”)

 When you do calculations with numbers that are known only to a particular 
accuracy, then your answer is also only of a particular accuracy. After you 
do all your calculations, you need to round the answer. Here are some simple 
rules you can apply:

 ✓ If you multiply or divide two numbers: The answer has the same number 
of significant figures as the least-accurate of the two numbers being multi-
plied or divided. For example, consider the following calculation:

  12.45 × 0.050 = 0.6225

  Because 0.050 has two significant figures, you round the answer to 0.62.

 ✓ If you add or subtract two numbers: The answer has the same number 
of decimal places as the least-accurate of the two numbers you’re adding 
or subtracting. For example, consider

  11.432 + 1.3 = 12.732

  Because the least-accurate number, 1.3, has only one decimal place, 
write the answer as 12.7.

Refreshing Your Physics Memory
To make progress, physics often builds on previous physics advances. For 
example, knowing about vectors is important not just to handle problems 
with acceleration (that’s Physics I) but also to help you track charged par-
ticles in magnetic fields (that’s Physics II).
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In this section, you take a down-memory-lane tour of some Physics I con-
cepts that pop up again in Physics II. If you don’t feel comfortable with these 
topics, check out a physics text to make sure you’re up to speed in Physics I 
before proceeding.

Pointing the way with vectors
 Vectors are the physics way of pointing a direction. A vector has a direction 

and a magnitude (size) associated with it — the magnitude is the vector’s length.

You usually see the names of vectors in bold in physics. Figure 2-2 shows 
vector A. That’s just a standard vector, and it may stand for, say, the direc-
tion an electron is traveling in. The length of the vector may indicate the 
speed of the electron — the faster the electron is going, the longer the vector.

 

Figure 2-2: 
The compo-

nents of a 
vector.

 

y

x

θ

Ax

Ay A

You don’t see lots of vectors in this book (did I just hear a sigh of relief?), but 
you should know how to break a vector like A up into its components along 
the x- and y-axes (you need to do this in Chapter 4 for the magnetic field and 
in Chapter 5 for alternating currents and voltages).

 If you’re given the length of the vector (its magnitude, labeled A in Figure 2-2) 
and the angle θ (its direction), breaking a vector into its components works 
like this:

 ✓ A
x = A cos θ

 ✓ A
y
 = A sin θ
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where A
x
 is the x component of vector A and A

y
 is the vector’s y component. 

(This is really just a bit of trig, where A
x
 and A

y
 are the legs of the triangle 

and A is the hypotenuse — see the earlier section “Using some trig” for info 
on the sine and cosine functions.)

 Resolving vectors into components is particularly useful if you have to add 
two vectors, A + B. You break them up into their separate components and 
then add those components to get the components of the vector sum, which 
is a new vector you can call C:

 ✓ C
x
 = A

x
 + B

x

 ✓ C
y
 = A

y
 + B

y

When you have the components of a vector like C, you can covert them into a 
length (magnitude) for C (written as ) and an angle for C this way:

 ✓ Magnitude of C: 

  Note: This is just the Pythagorean theorem solved for the hypotenuse .

 ✓ Direction of C: 

  See the earlier section “Using some trig” for info on inverse trig functions.

So now you’re able to go from representing a vector in terms of its length and 
angle to its components and then back again — a very handy skill to have.

Moving along with velocity 
and acceleration
This book has a little to say about velocity and acceleration. For example, 
you work with them when a magnetic field diverts electrically charged par-
ticles from the direction in which they’re traveling.

Both velocity and acceleration are vectors, v and a respectively. Velocity is 
the change in the position-vector divided by the time that change took. For 
example, if the position of a ping-pong ball is given by the position-vector 
x, then the change in the position (Δx) divided by the amount of time that 
change took (Δt) is the velocity:

As a vector, velocity has a direction. The magnitude of the velocity vector is 
the speed, which has a size but not a direction. That is, velocity is a vector, 
but speed isn’t.
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If the velocity isn’t staying constant, the ping-pong ball is undergoing accel-
eration. Acceleration is defined as the change in velocity divided by the time 
that change takes, or

 Note that a change in direction is considered a change in velocity, so some-
thing can be accelerating even if its speed doesn’t change.

Velocity is commonly measured in meters per second (m/s) — which means 
that acceleration’s units are commonly meters per second squared (m/s2).

Strong-arm tactics: Applying some force
When an electron enters an electric field, it gets pushed one way or another — 
that is, it experiences a force. Physics I has a lot to say about force — for 
example, here’s the famous equation that relates total force (F), mass (m), 
and acceleration (a) (note that acceleration and force are both vectors):

F = ma

So to find out how much force is acting on the electron to push it along (and you 
don’t need much, because electrons don’t weigh very much), you’d put in the 
electron’s acceleration and its mass, and you’d get the total force acting on it. 
The formula also shows that applying a force to something can make it accel-
erate, and you see that idea used every now and then in this book.

The units of force you see most commonly are newtons (in the meter-kilogram-
second system), symbol N, named for Sir Isaac Newton (the fellow with the 
falling apple acted on by the force of gravity).

Getting around to circular motion 
Charged particles in magnetic fields travel in circles, so you need to know 
something about circular motion in Physics II. Physics I has plenty to say 
about circular motion. For example, take a look at Figure 2-3, where an object 
is traveling in circular motion.

 The velocity of an object moving in a circle points along the circle of its path — 
this is called the tangential direction. The force that keeps the object moving in a 
circle points toward the center of the circle — in a direction that’s at right angles 
to the velocity. For instance, when you spin a ball on a string, the string can exert 
a force on the ball only in the direction that’s along its length, perpendicular to 
the path of the ball; this is what causes the ball to move in a circular path.
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Figure 2-3: 
Circular 
motion.

 

v

F

θ

The angle that an object moving in circular motion covers in so many sec-
onds is its angular velocity, ω:

Here, the angle θ is measured in radians, so the units of angular velocity are 
radians/second. (Note: Exactly 2π radians are in a complete circle, which 
means that 2π radians equals 360°, or each radian is 360° ÷ 2π degrees.)

If the object is speeding up or slowing down, it’s undergoing angular accel-
eration, which is given the symbol α. Angular acceleration is defined as the 
change in angular velocity (Δω) divided by the time that change took (Δt):

The units of angular acceleration are radians/second2.

In circular terms, force becomes torque, with the symbol τ (also a vector, of 
course), where the magnitude of torque equals force multiplied by distance 
and the sine of the angle between them:

τ = Fr sin θ

And the counterpart of mass in circular terms is the moment of inertia, I. 
Newton’s law, force = mass × acceleration, becomes this in circular terms:

τ = Iα

That is, torque = moment of inertia × angular acceleration.
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Even linear kinetic energy has an alter ego in the circular world, like this:

You can have angular momentum, L, as well:

L = Iω

Getting electrical with circuits
Physics I introduces the idea of circuits, at least simple circuits with batteries. 
The rules of resistance and Kirchoff’s rules, which I review in this section, form 
the basis for describing the currents and voltages in circuits. You need these 
rules whenever you work out the various currents and voltages. For example, in 
Chapter 5, you use them for a simple circuit with three elements in series. You 
can find a more thorough description of these rules in Physics For Dummies.

 According to Ohm’s law, you can determine the current going through any 
resistor with the following equation, where I is the current measured in 
amperes, V is the voltage across the resistor measured in volts, and R is the 
resistance of the resistor measured in ohms (Ω):

That helps with individual resistors, but what about when they’re assembled 
into a circuit as Figure 2-4 shows? There, you can see three resistors with 
resistances of 2 Ω, 4 Ω, and 6 Ω. The currents in each wire, I1, I2, and I3, are 
driven by the two batteries, which generate voltages of 12 volts and 6 volts.

 

Figure 2-4: 
A circuit 
with two 

loops.
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− −+ +

−+− +
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2 Ω

I2

I1

I3 6 V

A

12 V
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 To solve for the currents and voltages, you use Kirchoff’s rules:

 ✓ The loop rule: The sum of voltages (ΣV) around a loop — any loop in 
the circuit — is zero:

  

 ✓ The junction rule: The sum of all currents (ΣI) into any point in the cir-
cuit must equal the sum of all currents out of that point (that is, the net 
sum of all currents into and out of any point in the circuit must be zero):
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Part II

Doing Some Field 
Work: Electricity 
and Magnetism
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In this part . . .

Physicists have long been friends with electricity 
and magnetism. In this part, you see all about 

electric field, charges, the force between charges, electric 
potential, and more. You also explore magnetism, such 
as the magnetic field from a wire, the force between two 
wires, how charged particles orbit in magnetic fields, and 
the like. And you look at AC circuits, in which magnetic 
and electric fields work together to regenerate the current.
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Chapter 3

Getting All Charged 
Up with Electricity

In This Chapter
▶ Understanding charges

▶ Examining electric forces and Coulomb’s law

▶ Finding electric field

▶ Finding electric potential

▶ Understanding electric potential and capacitors

This chapter is dedicated to things that go zap. Chances are that your 
day-to-day life would be very different without electrical appliances from 

the computer to the light bulb. But electricity is even more important than 
that; it’s a physical interaction that’s fundamental to how the whole universe 
works. For example, chemical reactions are all basically of an electrical 
nature, and without electricity, atomic matter — the world as you know it — 
could not exist.

Even though electricity is integral to the existence of all the complicated con-
structions of matter and chemistry, it has a simple and beautiful nature. In 
this chapter, you see what makes static electricity, electric fields, and electric 
potential work.

Understanding Electric Charges
Where does electric charge come from? It turns out to be built into all matter. 
An atom is made up of a nucleus and electrons in orbit around the nucleus, 
and the nucleus is made up of protons and neutrons. The protons have a pos-
itive charge (+), and the electrons a negative charge (–). So you have electric 
charges inside any piece of matter you care to name.
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What can you do with that charge? You can separate charges from each 
other and so charge up objects with an excess of one charge or another. 
Those separated charges exert forces on each other. In this section, I discuss 
all these concepts — and more — about electric charges.

Can’t lose it: Charge is conserved
Here’s an important fact about charge: Just as you can’t destroy or create 
matter, you can’t create or destroy charge. You have to work with the charge 
you have.

 Because charge can’t be created or destroyed, physicists say that charge is 
conserved. That is, if you have an isolated system (that is, no charge moves in 
or out of the system), the net charge of the system stays constant.

Notice that the conservation of charge says the net charge remains constant — 
that is, the sum of all charges stays the same. The actual distribution of 
charges can change, such as when one corner of a system becomes strongly 
negatively charged and another corner becomes positively charged. But the 
sum total of all charge — whether you’re talking about the whole universe or 
a smaller system — remains the same. No charge in or out means the charge 
of the system remains constant.

Measuring electric charges
Electric charges are measured in coulombs (C) in the MKS system, and 
each electron’s charge — or each proton’s charge — is a tiny amount of cou-
lombs. The proton’s charge is exactly as positive as the electron’s charge is 
negative.

 The electric charge of a proton is named e, and the electric charge of an elec-
tron is –e. How big is e? It turns out that

e = 1.60 × 10–19 C

That’s really tiny. Here’s how many electrons make up 1 coulomb:

So there are 6.25 × 1018 electrons in 1 coulomb of (negative) charge.
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Opposites attract: Repelling 
and attracting forces
An uncharged atom is composed of as many electrons as protons. These stay 
together because of the mutual attraction of these positively and negatively 
charged components. That’s why all ordinary matter doesn’t instantly disin-
tegrate before your very eyes.

Objects that have the same charge (– and – or + and +) exert a repelling force 
on each other, and objects that have opposite charges (+ and –) attract each 
other (you’ve always heard that opposites attract, right?). For example, take 
a look at Figure 3-1, where two suspended ping-pong balls are being charged 
in various ways.

 

Figure 3-1: 
Force 

between 
charges.

 

−− − + ++

(a) (b) (c)

In Figure 3-1a, the two ping-pong balls have the same, negative charge. 
They’re exerting a repelling force on each other, forcing them apart. And the 
funny thing is that they’ll stay that way indefinitely, no additional action or 
batteries needed — the static charge on each ping-pong ball just stays there.

 Actually, it’s not totally true that the charge on each ping-pong ball just stays 
there. In fact, charge is continually being transferred from charged objects 
to the water molecules in the air, which carry it off. On humid days, charged 
objects actually lose their charge faster.

In Figure 3-1b, the two ping-pong balls have opposite charges, – and +, so 
they attract each other. Note that if they were to touch, charge would flow 
and the two ping-pong balls would each end up with the same charge. If the 
+ charge is the same magnitude as the – charge, that means that the balls 
would end up electrically neutral and would just hang down straight.

In Figure 3-1c, the two ping-pong balls have the same positive charge, so once 
again they repel each other. The force repelling the two ping-pong balls is the 
same as that in Figure 3-1a if the positive and negative charges have the same 
magnitude (just different signs).
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Getting All Charged Up
In this section, you see how to deliver charge to objects. I let it sit there a 
while, and you experience charge in a way that really makes your hair stand 
on end: static electricity. I also transfer charge from object to object, and I let 
it flow nice and smoothly through wires.

Static electricity: Building up excess charge
You may not be able to create or destroy charges, but you can move them 
around and create imbalances within a system. When you charge up an 
object, you keep adding more and more charges to the object, and if that 
charge has nowhere to go, it just accumulates. Static electricity is the kind of 
electricity that comes from this excess charge.

Everyone’s familiar with the unpleasant experience of walking across a rug 
and then getting zapped by a doorknob. What’s actually happening there? 
Turns out that you’re actually picking up spare electrons from the rug. Your 

Putting charges to work: The story on photocopiers
Many areas of modern life depend on electri-
cal charges — and not just flowing electricity. 
Static electricity plays a role as well. For exam-
ple, take a photocopier, which makes copies 
through a process called xerography (from the 
Greek words xeros and graphos, which mean 
“dry writing”).

Here’s how a photocopier works: A drum with a 
surface that contains the element selenium (Se) 
does the actual printing — selenium is used 
because of its electrical properties in response 
to light. The drum is given a positive charge, 
evenly distributed over the drum’s surface.

Next, an image of the document to be copied is 
focused on the drum, which revolves to catch 
the light that’s scanning along the document. 
The image forms light and dark areas on the 
drum — and here’s the tricky part: The dark 

parts retain their positive charge, but thanks 
to the properties of selenium, the light areas 
become conducting, and their positive charge 
is conducted away, leaving them neutral.

In the next step, dry toner (powder of the color 
you’re printing — black powder in a black-and-
white copier) is given a negative charge and 
sprayed onto the drum. The negatively charged 
toner sticks to the positively charged areas of 
the drum (which mimic the dark areas of the 
document), producing a mirror image of the 
document in toner on the drum.

The drum is then pressed against a blank piece 
of paper, and the toner on the drum adheres to 
the paper. The paper is then passed through 
heated rollers to fix the toner onto the paper. 
And there you have your copy, all thanks to the 
ability of opposite charges to attract each other.
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body collects an excess of electrons, and when you touch the doorknob, they 
flow out of you. Ouch!

 Protons, being bound inside the nucleus, aren’t really free to flow through 
matter, so when you charge something, it’s usually the electrons that are 
moving around and redistributing themselves. When something gets charged 
negatively, electrons are added to it. When it gets charged positively, elec-
trons are taken away, leaving the protons where they are, and the net surplus 
of protons makes a positive charge.

Before you’re zapped, that excess of charge is static electricity: It’s electric-
ity because it’s made up of electrical charges, and it’s called static electricity 
when it isn’t flowing anywhere. When you’re charged with static electricity, 
each of the hairs on your head carries a share of this excess of electrons. You 
may develop a spiky new hairstyle as each hair repels its neighbor (which 
has the same charge). Your hair quickly returns to normal if you touch some-
thing that the excess electrons can flow into. They quickly rush through the 
contact point, giving you the shock.

Though charge can flow through your fingertip, you usually find it flowing 
through wires in a circuit, where it doesn’t build up. In circuits, charge doesn’t 
collect and remain stationary, because it’s always free to flow (however, 
I show you an exception to this idea in the later section “Storing Charge: 
Capacitors and Dielectrics”).

But when electricity gets blocked and yet still piles up — it can’t go 
anywhere — then you have static electricity. If the electricity in a circuit 
is like a river of electricity that keeps flowing around and around (kept in 
motion by, say, a battery), then static electricity is like a river of electricity 
that’s dammed up — but charges keep getting added. So although charges 
don’t build up in circuits, they do build up when you have static electricity.

Checking out charging methods
In this section, I cover two ways to charge objects: by contact and by induc-
tion. These are simple physical mechanisms that can help you understand 
how charge behaves and how it can be redistributed.

Charging by contact
Charging by contact is the simplest way of charging objects — you just touch 
the object with something charged and zap! The object becomes charged. No 
big mystery here.

For example, take a look at Figure 3-2 — a negatively charged rod is brought 
into contact with a ball that’s originally neutral. The result? The ball is left 
with a negative charge. That’s because the electrons in the rod are always 
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pushing each other (because like charges repel), so they’re always looking 
for ways to redistribute themselves farther apart. When the rod comes in 
contact with the ball, some of the electrons take the opportunity to slip off 
the rod and onto the ball. Presto! The ball gets charged. (Note: For this to 
happen, the electrons need to be free to flow through the materials, which 
can happen if the materials are conductors. Materials that don’t allow elec-
trons to flow through them are insulators. I discuss both types of materials 
later in “Considering the medium: Conductors and insulators.”)

 

Figure 3-2: 
Charging by 

contact.
 

– –
– –

–

–

– –
– –

–
–

 Touch a negatively charged glass rod to a neutral ping-pong ball, and the ball 
acquires a negative charge by contact. But you may wonder how to charge 
the glass rod in the first place. You can do this in many ways, but the simplest 
and oldest way is to take a glass rod and some silk and rub the two together. 
A transfer of electrons from one material to the other occurs due to molecular 
forces between the two types of material. Different materials have different 
propensities to exchange electrons — you may have noticed that a balloon 
and a wool sweater work well.

Charging by induction
You can deliver charge to an object indirectly using induction. Here’s how 
charging by induction works: You bring a charged rod close to a neutral 
object. Say the rod is charged negatively — the negative charges (electrons) 
in the neutral object are repelled to the opposite side of the object, leaving a 
net positive charge close to the rod, as Figure 3-3 shows at the top.

Now comes the clever part: You connect the far side of the object to the 
ground. Just connect a wire from the far side of the object to the actual 
Earth, which acts as a huge reservoir of charge. The negative charges — 
the electrons — that are being forced to the far side of the object are frantic 
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to get off the object, because the charge on the rod is repelling them. By con-
necting the far side of the object to the ground with a wire, you provide those 
electrons with an escape route. And the electrons take that escape route by 
the millions and trillions.

Then you cleverly disconnect the wire from the far side of the object. The 
electrons that wanted to get away have fled — and now there’s nowhere else 
for any other charges to go. The result is that the object is left with a positive 
charge, because you’ve drained off much of the negative charge that was being 
pushed by the rod. And you haven’t lost any of the charge on the glass rod.

The upshot is that the object is left with the opposite charge of the rod. And 
that’s charging by induction. Pretty cool, eh?

 

Figure 3-3: 
Charging by 

induction.
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–

–
+–
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–

–
+

– –
– –

–

–
+
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 Lightning rods work through induction. In thunderclouds, charges get sepa-
rated from the top to the bottom of the cloud, so the top and the bottom of 
the cloud become strongly charged. When lightning strikes, the charge on 
the bottom of the cloud is zapping the Earth. If you have a lightning rod, the 
strong charge on the bottom of the cloud induces the opposite charge on the 
lightning rod (which is connected to the ground). When lightning strikes, it’s 
attracted to that opposite charge and hits the lightning rod.

Considering the medium: Conductors 
and insulators
You’re probably familiar with the concepts of electrical conductors — like 
the copper wire in an extension cord — and electrical insulators — like the 
plastic that coats the electrical wire and prevents the electricity in the wire 
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from delivering a nasty shock. In this section, you take a closer look at con-
ductors and insulators in physics terms.

Say you have two charged objects some distance apart from each other. 
They’re not losing charge; they’re just sitting there. Then you bring a piece 
of rubber and touch both of them with the rubber. What happens? Nothing, 
because rubber is an electrical insulator; electricity is conducted through 
rubber only with difficulty.

Now say that you bring a copper bar in contact with the two objects — 
immediately, charge flows from one to the other, because copper is an 
electrical conductor.

 Good electrical conductors consist of atoms for which the outermost electrons 
are not very tightly bound, so they can easily hop from atom to atom and take 
part in an electric current. The electrons in the very outer orbit around the 
nucleus are called valence electrons, and those are the ones that can detach 
from atoms and roam freely through the conductor. (Interestingly, materials 
that are good electrical conductors, like most metals, are usually also good 
thermal conductors.)

 Current is always defined as the direction of the flow of positive charges, but in 
reality, it’s the electrons that do the moving and therefore transport electrical 
charge. In this case, electrons move from the negatively charged object to the 
positively charged object. But if you want to draw the direction of the current, 
that goes from the positively charged object to the negatively charged one. 
Historically, this convention was adopted before people knew that electrons, 
not positive charges, carry the current.

Coulomb’s Law: Calculating 
the Force between Charges

Coulomb’s law is one of the physics biggies. That’s the same Coulomb 
(Charles-Augustin de Coulomb) that the unit of charge, the coulomb, is named 
after, so you know Coulomb’s law has to be some serious stuff.

And serious stuff it is: Charges can attract or repel each other, and 
Coulomb’s law lets you calculate the exact force that two point charges a 
certain distance away will exert on each other. A point charge just has all its 
charge concentrated in a single point, with no surface area that the charge 
can be distributed over. Point charges are particularly beloved by physicists 
because they’re easy to work with.
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 Say you have two point charges, with opposite signs, attracting each other from 
a certain distance r apart. What’s the force between the two charges? Coulomb 
has the answer: His law says that if the charge of one charge is q1 and the charge 
of the other charge is q2, then the force between the two charges is

In this equation, k is a constant, and its value is 8.99 × 109 N-m2/C2; q1 and q2 
are the charges, in coulombs (C), of the charged objects doing the attracting 
or repelling; r is the distance between the charges; and F is the electrostatic 
force between the charges.

 Force is a vector, so when you’re looking at point charges, the direction of the 
force is always along a line between the two charges (assuming there are only 
two) and

 ✓ Toward each other if the charges have opposite signs (that is, the force 
has a negative sign)

 ✓ Away from each other if the charges have opposite signs (that is, the 
force has a positive sign)

Introducing Electric Fields
Electric field is the field in space created by electric charges. When two 
charges attract or repel each other, their electric fields are interacting.

Charge can be distributed in many ways. You can have point charges, sheets 
of charge, cylinders of charge, and many more configurations. Coulomb’s 
law, which I discuss earlier in “Coulomb’s Law: Calculating the Force between 
Charges,” works only for point charges. So how do you handle force for other 
distributions of charge? You often use electric fields, which I discuss in this 
section.

Sheets of charge: Presenting basic fields
How do you calculate force for a sheet of charge? Instead of modifying 
Coulomb’s law to handle sheets of charge, you can simply measure the force 
that the sheet of charge exerts on a small positive test charge. From there, you 
know how much force per coulomb the sheet of charge is capable of exerting, 
and when you have your own charge, which may be positive or negative, you 
can simply multiply the force per coulomb by the size of your charge.
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 The idea of measuring force per coulomb to handle non-point charges got to 
be very popular and became known as the electric field. Here’s the definition: 
Electric field (E) is the force (F) that a small test charge would feel due to the 
presence of other charges, divided by the test charge (q):

 Electric field’s units are newtons per coulomb (N/C), and electric field is a 
vector. The direction of the electric field at any point is the force that would 
be felt by a positive test charge.

What’s that in plain English? Electric field is just the force per coulomb that 
a charge would feel at any point in space. You divide out the test charge to 
leave you just newtons per coulomb, which you can multiply by your own 
charge to determine the force that charge would feel.

For example, say you’re walking on a wool carpet and pick up a static elec-
tricity charge of –1.0 × 10–6 coulombs. You suddenly encounter a 5.0 × 106 N/C 
electric field in the opposite direction in which you’re walking, as Figure 3-4 
shows.

 

Figure 3-4: 
The force on 

a charge in 
an electric 

field.
 

– Force

E field

How big of a force do you feel? Well, the electric field is 5.0 × 106 newtons per 
coulomb and you have a charge of –1.0 × 10–6 coulombs, so you get the following:

F = qE = (–1.0 × 10–6 C)(5.0 × 106 N/C) = –5.0 N

That is, you feel a force of 5.0 N, and the minus sign means that the force is in 
the direction opposite of the electric field. That’s a little more than 1 pound 
of force.

So that’s what electric field tells you — how much electric influence is in a 
given region, ready to cause a force on any charge you bring into the electric 
field.
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 Note that the electric field has a direction. How can you tell which way the 
force that an electric field causes will push the charge you bring into the elec-
tric field? You can do this the hard way, with formal definitions, or you can 
use the easy way. I prefer the easy way. Just think of electric field as coming 
from positive charges — that is, electric field arrows always do the following:

 ✓ Point away from any positive charges that create the electric field

 ✓ Go into negative charges

So you can always think of a bunch of positive charges as sitting at the base 
of the electric field arrows, and that tells you which way the force will act on 
the charge you bring into the electric field. For example, you have a negative 
charge in Figure 3-4, and you can think of the electric field arrows as coming 
from a bunch of positive charges — and because like charges repel, the force 
on your charge is away from the base of the arrows.

Looking at electric fields 
from charged objects
Not all electric fields are going to be as polite and evenly spaced as the elec-
tric field associated with the sheet of charge you see in Figure 3-4. For exam-
ple, what’s the electric field from a point charge?

Say that you have a point charge Q and a small test charge q. How do you 
find the force per coulomb? Coulomb’s law to the rescue here — just plug 
in the charges Q and q (for q1 and q2) and the distance between them to get 
the size of the force (see the earlier section “Coulomb’s Law: Calculating the 
Force between Charges” for more on this formula):

 So what’s the electric field? You know that E = F/q, so all you have to do is to 
divide by your test charge, q, to get the following:

So the electric field at a given place falls off by a magnitude of r2, the square 
of the distance away from a point charge.

And what about the direction of the electric field? Well, the force exerted by 
a point charge is radial (that is, toward or away from the point charge). And 
electric field emanates from positive charges and goes into negative charges, 
so Figure 3-5 shows you what the electric field looks like for a positive point 
charge and a negative point charge.
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Figure 3-5: 
The electric 

field from 
two point 
charges.

 

+ −

Uniform electric fields: Taking it easy 
with parallel plate capacitors
The electric field between multiple point charges isn’t the easiest thing to 
come to grips with in terms of vectors. So to make life easier, physicists came 
up with the parallel plate capacitor, which you see in Figure 3-6.

A parallel plate capacitor consists of two parallel conducting plates separated 
by a (usually small) distance. A charge +q is spread evenly over one plate 
and a charge –q is spread evenly over the other. That’s great for physicists’ 
purposes, because the electric field from all the point charges on these plates 
cancels out all components except the ones pointing between the plates, as 
you see in Figure 3-6.

 

Figure 3-6: 
The elec-

tric field 
between 

parallel 
charged 

plates.
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So by being clever, physicists arrange to get a constant electric field, all in 
the same direction, which is a heck of a lot easier to work with than the field 
from point charges.

So what is the electric field between the plates? You can determine that the 
electric field (E) between the plates is constant (as long as the plates are 
close enough together), and in magnitude, it’s equal to

where εo, the so-called permittivity of free space, is 8.854 × 10–12 C2/(N-m2); q is 
the total charge on either of the plates (one plate has charge +q and the other 
is –q); and A is the area of each plate in square meters.

 The equation for the electric field (E) between the plates of a parallel plate capaci-
tor is often written in terms of the charge density, σ, on each plate, where σ = q/A 
(the charge per square meter), and here’s what that makes the equation look like:

When you work with a parallel plate capacitor, life becomes a little easier 
because the electric field has a constant value and a constant direction (from 
the + plate to the – plate), so you don’t have to worry about where you are 
between those plates to find the electric field.

Take a look at an example. Say, for instance, that you put a positive charge of 
+1.0 coulombs inside the plates of a parallel plate capacitor, as in Figure 3-7.

 

Figure 3-7: 
A positive 

charge 
inside the 

electric field 
between 

parallel 
charged 

plates.
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And also assume that the charge of the plates is 1.77 × 10–11 coulombs and 
that the area of each plate is 1.0 square meters. That would give you the fol-
lowing result for the electric field between the plates:

The electric field is a constant 2.0 newtons per coulomb. To find the force on 
a 1.0-coulomb charge, you know that

F = qE

And in this case, that’s 1.0 C × 2.0 N/C, for a total of 2.0 N (or about 0.45 
pounds). That calculation is pretty simple, because the electric field between 
the parallel plates is constant — unlike what the electric field would be 
between two point charges.

Shielding: The electric 
field inside conductors
This section examines how, in any electric field at all, people can make a little 
safe haven — a region of zero electric field — with only the aid of a hollow 
conductor!

Figure 3-8 shows an internal cross-section of a spherical conducting ball. 
Say that some charges were planted inside the solid metal ball. Now, elec-
tric charges always generate an electric field, and conducting materials let 
charges flow freely in response to electric field, so what happens?

 

Figure 3-8: 
Charges 
inside a 

conductor.
 

+
+

+
++

The electric field generated by the charges implanted in the conducting material 
push other, similar charges away. As a result, charges move around until like 
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charges are as far away from each other as possible. You can see the result 
in Figure 3-9 — charges immediately appear on the surface of the conductor. 
In fact, all the charge appears immediately on the surface — no net charge 
is left inside the conductor. (Note: Although this example shows positive 
charge moving, electrons really do the moving, so a reduction of electrons 
that appear on the surface is what creates a positive charge.)

 

Figure 3-9: 
Charges 

on the 
surface of a 
conductor.

 

This kind of behavior — the free motion of charges in conductors — is very 
useful. For example, if you’re in the middle of a region of electric field and 
you want to have no electric field present, you can shield yourself from the 
electric field.

To shield yourself from the electric field, you place a conducting container in 
the field, as in Figure 3-10. The electric field outside the container induces a 
charge on the container. But the nature of conductors is to let charges flow if 
there’s any net charge — and any way for it to move around — so the electric 
field from the induced charges and the preexisting electric field cancel each 
other out. The result is that there’s no electric field inside the conducting 
container. You’ve shielded yourself from the external electric field. Nice.

 

Figure 3-10: 
Shielding 

yourself 
from an 
external 
electric 

field.
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Voltage: Realizing Potential
This section discusses an electrical concept that’s surely familiar: the idea of 
voltage. Yes, the kind of voltage you get when you plug something into a wall 
socket. The kind you get when you put a battery into a flashlight or when you 
rely on a car battery to start your car.

Here, you see how voltage relates to electrical energy. As charges move in 
electric fields, they can swap some of their energy of motion (kinetic energy) 
for electrical energy, and vice versa. For example, if you have two opposite 
charges close together, you have to do some work to separate them due to 
their mutual attraction. After you’ve separated the two charges, the work 
you did doesn’t just disappear — it’s stored in the electrical potential energy 
between them. This section explains how this idea relates to voltage and how 
voltage relates to the electric field in the special cases of a uniform field and 
the field around a point charge.

Getting the lowdown on electric potential
If you have a mass in a gravitational field, it has potential energy. As you 
throw a ball upward, for example, the kinetic energy of its motion is con-
verted to gravitational potential energy as it reaches its peak, and then the 
potential energy changes back to kinetic energy as the ball falls back to you. 
The gravitational forces on the ball do work and exchange potential and 
kinetic energy. Because a force likewise acts on charges in an electric field, 
you can speak about potential energy here, too. That potential energy is elec-
tric potential energy.

What makes all forms of energy essentially the same is that they can all be 
converted to mechanical work. As you may remember from Physics I, work 
done (W) is the result of a force (F) moving a body through a distance (s), 
and they’re related thus: W = Fs. The energy in the interaction of a charge 
with an electric field is converted to work when the electrical forces move 
the charge. Moving twice as much charge takes twice as much work for the 
electrical forces. The work that’s done for every unit of charge is the voltage.

 In physics, voltage is called electric potential (not electric potential energy, which 
isn’t per unit of charge); sometimes, it’s just shortened to potential. Instead 
of using the term voltage, it’s more correct to say that electric potential is 
measured in volts, whose symbol is V.
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53 Chapter 3: Getting All Charged Up with Electricity

In the case of a gravitational field, the gravitational force moves a mass in 
the direction of lower potential — things fall to the ground because they 
have lower gravitational potential there. In the same way, electrical forces 
move charges in the direction of lower electrical potential. The faster that 
the potential energy drops in that direction, the greater the force.

Now remember that electric field is force per unit charge, and electric 
potential is potential energy per unit charge. Therefore, the electric field 
is directed down the gradient (slope) of the electrical potential and has a 
strength proportional to the steepness of the slope.

 The electric potential (V) at a particular point in space is the electric potential 
energy of a test charge located at the point of interest divided by the magni-
tude of that test charge, like this:

So you can think of electric potential as electric potential energy per coulomb.

So by how many volts does one plate of a charged parallel plate capacitor differ 
from the other plate? It differs by the energy needed to move 1 coulomb of charge 
from one plate to the other. (Note that volts are the same as joules/coulomb.)

Finding the work to move charges
Say that you’re sitting around, dismantling the smoke alarm in your apartment 
(which won’t make your landlord very happy) and you find a 9.0-volt battery. 

Looking at lightning volts
In a thunderstorm, the clouds are at a different 
electric potential from the ground. The electric 
potential becomes too great for the air and the 
air breaks down, conducting electric charge, so 
every now and then, lightning strikes between 
the Earth and the clouds.

How many volts are between clouds and 
the Earth in a thunderstorm? Plenty. It takes 

11,000 volts to make a spark across 1 centimeter 
of air — and there are 100,000 centimeters in a 
kilometer (about 0.62 miles), the typical height of 
a cloud during a thunderstorm. You do the math.

Okay, I’ll do the math: that’s 11,000 volts/centi-
meter × 100,000 centimeters = 1.1 × 109 volts — 
which is indeed plenty of volts when compared 
to, say, a wall socket that has 110 volts.
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Whipping out the voltmeter you always carry, you measure the voltage between 
the terminals as exactly 9.0 volts. Hmm, you think. How much energy does it take 
to move one electron between the two terminals of the battery — a difference in 
electrical potential between the terminals of 9.0 volts?

Well, you realize that 9.0 volts is the change in potential energy per coulomb 
between the terminals. And change in potential energy is equal to work. So 
how much work does it take to move one electron between the terminals? 
You start by noting that the electric potential is

which means that

W = qΔV

Here, W is the work needed to move charge q across potential difference ΔV.

Now plug in some numbers. The charge of an electron is a miniscule –1.6 × 
10–19 coulombs, and the potential difference between the negative and posi-
tive battery terminals is 9.0 volts, so

W = qΔV = (–1.6 × 10–19)(9.0) = –1.4 × 10–18 J

Therefore, –1.4 × 10–18 joules of work is done as the electron moves between 
the two terminals of a 9-volt battery.

You may remember the meaning of negative work from Physics I. The work is 
negative because the electron’s potential energy falls — that is, the electric 
force does the work of moving the electron. Moving the electron in the other 
direction would require an equal quantity of positive work from you, because 
you’d have to move it up the potential difference, against the electric field.

Finding the electric potential from charges
Say you have a point charge Q. What’s the electric potential due to Q at some 
distance r from the charge? You know that the size of the force on a test 
charge q due to the point charge is equal to the following (see the earlier sec-
tion “Looking at electric fields from charged objects” for details):

where k is a constant equal to 8.99 × 109 N-m2/C2, Q is the point charge mea-
sured in coulombs, q is the charge of the test charge, and r is the distance 
between the point charge and the test charge.
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You also know that the electric field at any point around a point charge Q is 
equal to the following:

Thus, close to the point (when r is small), E is large and the field is therefore 
strong. As you move away from the point charge, r increases and the electric 
field quickly becomes weak.

Suppose you place a small test charge, q, in this field and try moving it around. 
The test charge feels a strong force close to the point charge, which quickly 
falls away as you move it to a greater distance. If the test charge is of the 
opposite sign to the point charge, you have to do work to pull it away from 
the point charge. This means that the test charge has a lower potential energy 
closer to the point charge (this is reversed if the charges are the same sign).

So what’s the electric potential from the point charge? At an infinite distance 
from the point charge, you can’t see it or be affected by it, so set the poten-
tial from the point charge to be zero there. As you bring a test charge closer, 
to a point r away from the point charge, you have to add up all the work you 
do and then divide by the size of the test charge. And the result after you do 
turns out to be gratifyingly simple. Here’s what that it looks like:

So the electrical potential is large close to the point charge (when r is small) 
and falls away at greater distances. This idea applies to all point charges, so 
what does it mean for the electrons orbiting the protons in an atom? How 
hard do you have to work to pull an electron away from an atom?

First find the electrical potential. The size of the charge of the electron and 
the proton is 1.6 × 10–19 coulombs. The electron and proton are typically 
5.29 × 10–11 meters apart, so the electric potential is

That close to the proton, the electric potential is a full 27.2 volts. That’s quite 
something for such a tiny charge!

The amount of energy needed to move an electron through 1 volt is called an 
electron-volt (eV). So you may expect that you’d need 27.2 eV of energy to pull 
an electron out of the atom. But the electron is moving quickly, so it already 
has some energy to contribute. In fact, the electron has so much kinetic 
energy that you need only half that, 13.6 eV of energy, to win the electron 
from the atom!
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Illustrating equipotential surfaces 
for point charges and plates
To illustrate electric potential, you can draw equipotential surfaces; that is, 
surfaces that have the same potential at every point. Drawing an equipoten-
tial surface gives you an idea of what the electric potential from a charge or 
charge distribution looks like. For example, on one equipotential surface, the 
potential could always be 5.0 volts or 10.0 volts.

Because the potential from a point charge depends on the distance you are 
from the point charge, the equipotential surfaces for a point charge are a set 
of concentric spheres. You can see what they’d look like in Figure 3-11.

 

Figure 3-11: 
Dashed lines 

showing 
equipotential 

surfaces 
from a point 

charge.
 

+

Now consider equipotential surfaces between the plates of a parallel plate 
capacitor (see the earlier section “Uniform electric fields: Taking it easy with 
parallel plate capacitors” for more on these devices). If you start at the nega-
tively charged plate and move a distance s toward the positively charged 
plate, you know that
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57 Chapter 3: Getting All Charged Up with Electricity

In other words, the equipotential surfaces here depend only on how far you 
are between the two plates. You can see this in Figure 3-12, which shows two 
equipotential surfaces between the plates of the parallel plate capacitor. Tip: 

This is analogous to the gravitational potential close to the ground, which 
increases in proportion to height. They’re both cases of uniform fields in 
which the field is the same at every point.

 

Figure 3-12: 
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the plates 
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lel plate 
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Storing Charge: Capacitors 
and Dielectrics

A capacitor, generally speaking, is something that stores charge. I discuss 
parallel plate capacitors earlier in this chapter, but a capacitor need not be 
shaped like two parallel plates — any two conductors separated by an insula-
tor form a capacitor, regardless of shape. A dielectric increases how much 
charge a capacitor can hold. This section covers how capacitors and dielec-
trics work together.

Figuring out how much capacitors hold
How much charge is actually stored in a capacitor? That depends on its 
capacitance, C. The amount of charge stored in a capacitor is equal to its 
capacitance multiplied by the voltage across the capacitor:

q = CV
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The MKS unit for capacitance C is coulombs per volt (C/V), also called the 
farad, F. For a parallel plate capacitor, the following is true (see the preceding 
section for details):

 Because q = CV, you know that C = q/V, and you can solve the preceding equa-
tion to get the following:

So that’s what the capacitance is for a parallel plate capacitor whose plates 
each have area A and are distance s apart.

Getting extra storage with dielectrics
A dielectric is a semi-insulator that lets a capacitor store even more charge, 
and this substance works by reducing the electric field between the plates. 
Take a look at Figure 3-13. When you apply an electric field between the two 
plates, that induces some opposite charge on the dielectric, which opposes 
the applied electric field. The net result is that the electric field inside the 
dielectric (which fills the area between the plates) is reduced, allowing the 
capacitor to store more charge.

 

Figure 3-13: 
Using a 

dielectric 
between 

the plates 
of a paral-

lel plate 
capacitor.

 

+ –

 If you fill the space between the plates in a parallel plate capacitor with a 
dielectric, the capacitance of the parallel plate capacitor becomes the 
following:

The dielectric increases the capacitance of the capacitor by the dielectric 
constant, κ, which differs for every dielectric. For example, the dielectric 
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59 Chapter 3: Getting All Charged Up with Electricity

constant of mica, a commonly used mineral, is 5.4, so capacitors that use 
mica increase their capacitance by a factor of 5.4. The dielectric constant of a 
vacuum is 1.0.

Calculating the energy of capacitors 
with dielectrics
Because a capacitor stores charge, it can act as a source of electric current, 
like a battery. So in terms of capacitance and voltage, how much energy is 
stored in a capacitor?

Well, when you charge a capacitor, you assemble the final charge q in an 
average potential V

avg
 (you use the average potential because the potential 

increases as you add more charge). So here’s the energy stored:

Energy = qV
avg

This raises the question, of course, of just what V
avg

 is. Because the voltage 
is proportional to the amount of charge on the capacitor (because q = CV ), 
V

avg
 is one-half of the final charge. Or looked at another way, as you charge 

up a capacitor from 0 to its final voltage, the voltage increases linearly, so the 
average voltage is half the final voltage:

Plugging this value of V
avg

 into the energy equation and making the substitu-
tion that q = CV gives you the following equation:

For a parallel plate capacitor with a dielectric, the capacitance is

 So the energy in a parallel plate capacitor with a dielectric in it is

And there you have it — that’s the energy stored in a capacitor with a dielec-
tric (the energy ends up in joules from this equation). You can see why 
dielectrics are considered a good idea when it comes to capacitors — they 
multiply the capacitance and the energy stored in a capacitor many-fold.
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Chapter 4

The Attraction of Magnetism
In This Chapter
▶ Understanding magnetism

▶ Looking at magnetic forces on moving charges

▶ Finding magnetic forces on wires

▶ Generating magnetic fields with current in wires

Legend has it that more than 2,000 years ago, Magnes, a Greek shepherd, 
was walking with his flock when he found the nails that were holding his 

shoes together became inexplicably stuck to a rock — and that’s how mag-
netism was found. Thousands of years of mystery came together into a scien-
tific understanding only in the last few hundred years.

In this chapter, you explore the physicists’ understanding of magnetism. You 
see why permanent magnets (like the one stuck to Magnes’s shoe) attract 
some apparently nonmagnetic materials (like the iron nail in Magnes’s shoe). 
You see how magnetism is not really a strange new thing but only a different 
aspect of electricity. And you see how to work out exactly how big a mag-
netic force is and in which direction it goes. You find the magnetic influence 
of electrical currents, and you see that electrical currents are the source of 
magnetism.

With all this knowledge come all kinds of useful devices, like electric motors, 
speakers, doorbells, and even sophisticated medical imaging machines. 
That’s why I also discuss some practical uses of magnets and magnetism. For 
instance, I explain how a compass works by moving under the magnetic influ-
ence of the molten iron swirling at the center of the Earth. And at last you’ll 
know what makes those things stick to the fridge door.
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All About Magnetism: Linking 
Magnetism and Electricity

 Here’s the most important thing you need to know about magnetism: It’s 
closely related to electricity (which I cover in Chapter 3). Magnetism and 
electricity are just different aspects of the same thing — two sides of the same 
coin. In fact, where you have electricity flowing, you have magnetism, because 
magnetism comes from electrical current.

In this section, I discuss how current flows even in permanent magnets, 
because the electrons are in motion in the magnet’s atoms. I also explain 
the repelling and attractive forces at work in magnets, just like the forces 
between electrical charges. Finally, I give you a formal definition of magnetic 
field that ties magnetism and electric charge together.

Electron loops: Understanding permanent 
magnets and magnetic materials
Even in bar magnets or refrigerator magnets, electricity is indeed flowing. 
Every atom in that refrigerator magnet has a bunch of electrons circling a 
nucleus, and those electrons form an electric current. This is on the level — 
magnetism in permanent magnets comes from those tiny orbits that elec-
trons are continually zooming around in. Loops of current form a magnetic 
field, so the atoms behave like tiny magnets.

Most of the time, those tiny magnetic fields are pointing in all different 
directions, as you see in Figure 4-1a, so they add up to zero. However, in a 
permanent magnet, those tiny, atomic-level magnets are much more aligned, 
as in Figure 4-1b. When the micro-magnets in matter align, you end up with 
magnetism you can measure — and the magnet stays magnetized. That’s why 
you call such magnets (which take no external electrical power) permanent 
magnets. That alignment is the only difference between a permanent magnet 
and a permanent non-magnet.

Some materials are in between these opposites. For instance, all the atoms, acting 
like little magnets, may all start out pointing in random directions — imagine 
that the electrons are orbiting in planes that are randomly orientated. But when 
you put this material close to a magnet, the atoms are forced to rotate and align 
all together with the magnet. Then the magnetic influence of each atom adds 
together, so the material becomes magnetic. But when you take the material away 
from the magnet, the atoms relax back to their random orientations, and the 
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material stops being magnetic. Such a material is called paramagnetic. Two para-
magnets won’t stick to each other, but they will stick to a permanent magnet.

 

Figure 4-1: 
Micro-

magnets 
in matter, 
unaligned 

and aligned.

 (a) (b)

In another type of material, such as iron, the atoms are organized into little 
aligned regions, called domains. Each domain is magnetic, but the material 
has many domains that are randomly orientated. Now if you place this mate-
rial near a magnet, the domains are forced to align and the material becomes 
a magnet. But this time, when you take the material away, the domains stay 
aligned, and the piece of iron remains magnetic! This type of material is said 
to be ferromagnetic.

Electromagnets are nonpermanent magnets that work only when you have 
electricity flowing. I discuss these magnets later in “Going to the Source: 
Getting Magnetic Field from Electric Current.”

North to south: Going polar
Electricity has two sides to it: positive and negative. Electric field goes from the 
plus to the minus side (see Chapter 3 for details). Similarly, magnetism involves 
magnetic poles. And just as electric field goes from + charges to  – charges, 
magnetic field goes from one pole to the other — from north to south.

 The names of the magnetic poles come from the popular use of magnets in 
compasses — the North and South Poles are used in navigation. The north 
pole of a permanent magnet automatically points toward magnetic north of 
the Earth.

Magnetic field is often drawn as a set of lines — that is, magnetic field lines, 
much as electric field is drawn as electric field lines. Figure 4-2 shows the 
magnetic field lines going from north pole to south of a permanent magnet.

09_538067-ch04.indd   6309_538067-ch04.indd   63 6/1/10   8:11 PM6/1/10   8:11 PM



64 Part II: Doing Some Field Work: Electricity and Magnetism 

The magnetic Earth
The Earth is a huge magnet, as anyone with 
a compass knows — just watch your com-
pass needle point unerringly toward mag-
netic north. When you change locations, the 
compass needle finds magnetic north for you 
again. Unfortunately, magnetic north doesn’t 

match the true North Pole of the Earth — that 
is, geographic north, where the Earth’s axis of 
rotation pierces the surface of the Earth. The 
following figure shows how the Earth’s geo-
graphic north pole is offset from the magnetic 
north pole.

S

N

Equator

Notice how the magnetic pole in the figure is 
labeled S. That’s no typo — opposite magnetic 
poles attract, so to attract the north needle in 
your compass, the pole that lies just under the 
surface at the Earth’s “north magnetic pole” is 
really a south pole, not a north pole. But unlike 
labeling a bar magnet, the Earth’s actual South 
Pole is always called its North Pole — for which 
we have compasses to thank.

The distance from the geographic North Pole 
to the Earth’s magnetic north pole is fairly 
large — the magnetic north pole currently lies 
near Ellesmere Island in Northern Canada. 
Actually, the position of the Earth’s magnetic 
north pole wanders over the years. The mag-
netic pole’s yearly wanderings are appreciable: 
It’s currently moving at a rate of more than 40 

kilometers per year! The Earth’s magnetic field 
is maintained by the swirling movements of the 
molten iron deep inside the Earth, in the planet’s 
liquid outer core, allowing the magnetic pole to 
wander.

So how far away is the magnetic pole from the 
geographic pole? That’s measured by the angle 
of declination. That angle varies, depending on 
your position on the Earth, but it can be sizeable. 
For example, in New York City, the angle of 
declination is about 12°. You can find out much 
more on the Earth’s magnetic field, with cur-
rent data and many interesting links, on the 
Web sites of the Geological Survey of Canada 
(gsc.nrcan.gc.ca/geomag) and the 
United States Geological Survey (geomag.
usgs.gov).
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Figure 4-2: 
Magnetic 

field from a 
permanent 

magnet.
 

N SMagnet

Note that the magnetic field from a magnet like the one in Figure 4-2 isn’t 
very constant or uniform — just like the electric field from two point charges 
wouldn’t be uniform.

If you want a uniform magnetic field, you usually select a location between 
the two poles of a strong magnet, as Figure 4-3 shows. You can also create 
a uniform magnetic field using coils of current, as I explain later in “Adding 
loops together: Making uniform fields with solenoids.”

 

Figure 4-3: 
A uniform 
magnetic 

field 
between 

two poles.
 

N
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Defining magnetic field
Magnetism and electricity are so interconnected that magnetic field is defined 
in terms of the strength of the force it exerts on a positive test charge. The 
symbol M was already taken (it stands for the magnetization of a material), 
so magnetic field ended up with the symbol B. Here’s the formal definition of 
magnetic field, from a physics point of view:
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Here, B is the magnitude of the magnetic field and F is the magnitude of the 
force on the charge q, which is moving with speed v at an angle of θ to the 
direction of the magnetic field.

 In the MKS system, the unit of magnetic field is the tesla, whose symbol is T. 
In the CGS system, you use the gauss, whose symbol is G. You can relate the 
two like this:

1.0 G = 1.0 × 10–4 T

Moving Along: Magnetic 
Forces on Charges

Electric currents and magnetic fields are linked very closely. Not only do 
electric currents give rise to magnetic fields, but magnetic fields also exert 
forces on the electric charges moving in currents.

 Note that a charge has to be moving in order for a magnetic field to exert a 
force on it: No motion, no force on the charge.

In this section, I show you how to figure out the strength and direction of the 
magnetic force on a moving charge. I also explain how the direction of that 
force can ensure that magnetic fields don’t do any work. To finish, you see 
why the direction of the force causes charged particles to travel in circles in 
a magnetic field.

Finding the magnitude of magnetic force
To get numerical with magnetism, you have to start thinking in terms of vec-
tors. Suppose you have an electric charge moving with a velocity v. That 
charge is subject to a magnetic field, B. And of course, you need the F vector 
for the resulting force.

How can you determine the actual force, in newtons, on a charged particle 
moving though a magnetic field? That force is proportional to both the mag-
nitude of the charge and the magnitude of the magnetic field. It’s also propor-
tional to the component of the charge’s velocity that’s perpendicular to the 
magnetic field. In other words, if the charge is moving along the direction of the 
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magnetic field, parallel to it, there will be no force on that charge. If the charge 
is moving at right angles to the magnetic field, the force is at its highest.

 Putting all this together gives you the equation for the magnitude of the force 
on a moving charge, where θ is the angle (between 0° and 180°) between the v 
and B vectors:

F = qvB sin θ

For example, suppose you’re carrying around a 1.0-coulomb charge, and you 
experience a force from the Earth’s magnetic field. The Earth’s magnetic field 
on the surface is about 0.6 gausses, or 6.0 × 10–5 teslas. The faster you move 
with your charge, the more force you’ll feel, so suppose you take it for a spin 
in a race car. Head off down the track straight at about 224 miles per hour, or 
100 meters per second. What force do you feel on your charge at this speed 
in the direction perpendicular to the field? You know that the magnitude of 
the force is given by

F = qvB sin θ

So plug in the numbers. Here’s what that looks like when you do:

F = qvB sin θ

 = (1.0 C)(100 m/s)(6.0 × 10–5 T) sin 90°

 = 6.0 × 10–3 N

The force on the charge is 6.0 × 10–3 newtons, which is less than the weight of 
a paperclip.

Finding direction with the right-hand rule
Say you have a charge, q, traveling along with velocity v, minding its own 
business. If that charge travels in a magnetic field, B, there’s going to be a 
force on the charge. You can see the direction of the magnetic force on the 
moving charge in Figure 4-4.

 A right-hand rule operates when you’re finding the force on a charge, and 
there are two versions of it — use whichever one you find easier:
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 ✓ If you place the fingers of your open right hand along the magnetic field, 
the vector B in the figure, and your right thumb in the direction of the 
charge’s velocity, v, then the force on a positive charge extends out of 
your palm (see Figure 4-4a). For a negative charge, reverse the direction 
of the force.

 ✓ Place the fingers of your right hand in the direction of velocity of the 
charge, v, and then wrap those fingers by closing your hand through the 
smallest possible angle (less than 180°) until your fingers are along the 
direction of the magnetic field, B. Your right thumb points in the direc-
tion of the force (see Figure 4-4b). For a negative charge, reverse the 
direction of the force.

Give the two methods a try to make sure you get the direction of the force 
correct.

 

Figure 4-4: 
The force on 
a charge on 
a magnetic 

field and the 
associated 
right-hand 

rules.
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A lazy direction: Seeing how 
magnetic fields avoid work
Magnetic fields are lazy: They do no work on charged particles that travel 
through them — at least, not by the physics definition of work. So a charged 
particle in a magnetic field doesn’t gain or lose kinetic or potential energy.

When you have an electric field, the situation is very different. There, the 
electric field pushes a charge along or against the direction of travel. And 
that’s the physics definition of work:

W = Fs cos θ

where F is the force applied, s is the distance over which it’s applied, and θ is 
the angle between the force and the direction of travel. In fact, that’s where 
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the whole idea of electric potential, voltage, comes from — the amount of 
work done on a charge divided by the size of the charge:

 For the work done by a magnetic field, the trouble is the definition of work: 
W = Fs cos θ. The issue here is that in a magnetic field, the force and the direc-
tion of travel are always perpendicular to each other — that is, θ = 90° (see the 
preceding section). And cos 90° = 0, so the work done by a magnetic field on a 
moving charge, W = Fs cos θ, is automatically zero.

That’s it — the work done by a magnetic field on a moving charge is zero. 
That’s why there’s no such thing as magnetic potential (would that be mag-
netic volts?) to correspond to electric potential.

That’s all due to the physics definition of work — work changes the kinetic 
or potential energy of a system (or the energy is lost to heat), and nothing of 
the kind happens with magnetic fields. However, the direction of the charged 
particle does change. That’s what changes — not the particle’s speed but its 
direction.

Going orbital: Following charged 
particles in magnetic fields
The direction and magnitude of the force in a magnetic field affects the path 
that an electric charge takes. The direction of the force causes the charge to 
move in circles, and the force’s magnitude affects how big of a radius that 
circle has. In this section, I discuss the orbital motion of charges in magnetic 
fields.

Getting the curve
If you have an electric field (see Chapter 3), you know which way electric 
charges will move in such a field — along the electric field lines. For example, 
if you have a parallel plate capacitor, electrons will travel between the plates 
along the electric field lines, toward the positive plate. Protons will do the 
same, except they’ll move toward the negative plate.

The situation changes when you have a magnetic field, not an electric field. 
Now the force is perpendicular to the direction of travel, which can take a 
little getting used to. To better show the path of the charge, physicists often 
draw the magnetic field as though you were looking at it straight on. How 
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can you tell which way the magnetic field is going? Here’s the physics way of 
showing direction:

 ✓ Away from you: If you see a bunch of X’s, the magnetic field goes into 
the page. Those X’s are intended to be the end of vector arrows, seen 
tail-on (imagine looking down the end of a real arrow, tail toward you).

 ✓ Toward you: Dots with circles around them are supposed to represent 
arrows coming at you, so in that case, the field is coming toward you.

Take a look at Figure 4-5, which shows the path a positive charge moving in 
a magnetic field will take. The positive charge travels along a straight line, 
undeflected, until it enters the magnetic field that goes into the page (repre-
sented by the X’s). Then a force appears on the charge at right angles, bend-
ing its path, as you can see in the figure.

Note: This is a good place to test your understanding of the right-hand rule of 
magnetic force (see the earlier section “Finding direction with the right-hand 
rule”). Apply it to the velocity and magnetic field you see in Figure 4-5 — do 
you agree with the direction of the resulting force?

 

Figure 4-5: 
A positive 

charge 
being 

pushed in 
a magnetic 

field.
 

v

B

+q

Going in circles
Here’s an interesting point: Which way do you get pushed if you’re a charged 
particle moving in a magnetic field? The magnetic field is always perpendicu-
lar to the direction of travel (as Figure 4-4 shows earlier in this chapter). And 
no matter which way the charged particle turns, the force on it is perpendicu-
lar to its motion.

 That’s the hallmark of circular motion: The force is always perpendicular to 
the direction of travel. Therefore, charged particles moving in magnetic fields 
travel in circles.

See Figure 4-6 to get the full picture. There, a positive charge is moving to 
the left in a magnetic field. The dots with circles around them tell you that 
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magnetic field B is coming straight at you, out of the page. Using the right-
hand rule, you can tell which way the resulting force goes — upward when 
the positive charge is at the location in Figure 4-6.

What happens? The charge responds to that upward force by moving 
upward. And because the force due to the magnetic field is always perpen-
dicular to the direction of travel, the force changes direction, too.

 

Figure 4-6: 
In a mag-

netic field, 
a positive 

charge goes 
in circles.
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Finding the radius of orbit
Suppose you want to know the radius of the orbit of the charged particle 
moving in a magnetic field. Because the force is always perpendicular to the 
direction of travel, you end up with circular motion. And from Physics I, you 
have the following equation for the force needed to keep an object in circular 
motion:

Here’s the magnitude of the force on a charged particle moving in a magnetic 
field:

F = qvB sin θ

Because v is perpendicular to B in this case, θ equals 90°; therefore, sin θ 
equals 1, which means you get this:

F = qvB
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So set the two force equations — for circular motion and for the charged par-
ticle in the magnetic field — equal to each other:

 Rearranging this equation gives you this new version, solved for the radius:

That’s great — that gives you the radius of the charged particle’s path in a 
magnetic field, given its mass, charge, and velocity. This is one of the magne-
tism equations you should remember.

 Note the following relationships between the radius and the magnetic field, 
mass, and velocity:

 ✓ Magnetic field B: The stronger the magnetic field, the stronger the 
force — and therefore the smaller the radius of the charged particle.

 ✓ Velocity v: The more speed a charged particle has, the harder it is for 
the magnetic field to corral the particle, and so it travels in a circle with 
a bigger radius.

 ✓ Mass m: The more mass the charged particle has, the harder it’ll be to 
bend its path, so the more mass, the bigger the radius of the circle it 
travels in.

Notice how the equation reflects all these ideas: The magnetic field B is in the 
denominator of the fraction, so increasing B would give you a smaller answer 
for r; m and v are on top, so increasing either one of those would give you a 
larger r.

How about seeing this in action? Try some numbers. Say, for example, that 
you have a bunch of electrons going at 1.0 × 106 meters per second. You 
don’t want to disturb the neighbors, so you decide to build a magnetic contain-
ment vessel to contain the electrons, sending them around in a circular orbit. 
Checking your bank account, you see you have only enough money to create a 
magnetic confinement vessel of r = 1.0 centimeters (even that may make your 
landlady suspicious, but she’s learned that physicists sometimes need unusual 
equipment).

So what magnetic field do you need to limit your electrons to an orbit where 
r = 1.0 centimeters? You know that
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An electron has a mass of 9.11 × 10–31 kilograms and a charge of 1.6 × 10–19 
coulombs. Plugging in the numbers for electrons moving at 1.0 × 106 meters 
per second, you get

Rearranging this equation and solving for B gives you the answer:

That’s a very modest magnetic field — it’s not much more than the Earth’s 
magnetic field. It really doesn’t take much to push an electron around. (That’s a 
relief, because if you’d needed a magnetic field of several teslas, the landlady’s 
silverware, which is silver-plated steel, might’ve ended up stuck to her ceiling.)

 The equation

doesn’t apply if the charged particle is traveling near the speed of light, 
v ≈ 3.0 × 108 meters per second, because relativistic effects take over, which 
affect the mass and orbital radius of the charged particle. I discuss special 
relativity in Chapter 12.

Selecting your atoms with a mass spectroscope
Mass spectroscopes, which are machines that 
determine which chemical elements go into a 
sample you’re analyzing, rely on orbits in mag-
netic fields. A mass spectroscope heats the 
sample you want to analyze, ionizing some of 
the atoms. The singly ionized atoms get a net 
charge, e (the same magnitude as an electron’s 
charge), and those atoms are accelerated 
through an electric potential, V, which gives 
them kinetic energy. The ionized atoms then 

enter a magnetic field, B, and they turn with 
radius r. You can pick them up with a detector, 
and positioning the detector tells you the radius 
for the ionized atoms — and from knowing the 
radius, electric potential, and magnetic field, 
you can determine the mass of the atoms and 
therefore identify them.

So given r, e, and B, you solve for m, the mass. 
The accelerating electric potential, V, gives 

(continued)
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Down to the Wire: Magnetic Forces 
on Electrical Currents

You may be one of those rare physicists who doesn’t have a bunch of elec-
trons hurtling around at home at 1.0 × 106 meters per second. You may think 
that the preceding discussion, about charged particles in magnetic fields, 
doesn’t really apply to you. However, you surely have electric cables around 
the house — and what are electric cables but wires through which charges 
move? In this section, you look at the forces that magnetic fields exert on 
charges moving in electric wires.

From speed to current: Getting current 
in the magnetic-force formula
To find the magnetic force on an electric wire in a magnetic field, you can 
start with the formula for individual charges. Take a look at the equation for 
the force on a moving electric charge in a magnetic field:

F = qvB sin θ

(continued)

each ionized atom a kinetic energy, and the 
energy added by the electric potential must equal 
the kinetic energy added to each ion like this:

  

Solving this equation for velocity, v, gives you

  

The radius of curvature of the ion in the mag-
netic field is

  

And solving for m in this equation gives you

  

Because you just found v to be , you 
can substitute for v:

  

If you square both sides of this equation, you 
have

  

Moving things around a little algebraically gives 
you the mass of the ionized atom:

  

And there you have it — the next time you come 
across a mass spectrometer, you’ll know just 
how to find the masses of the atoms in any 
sample you put into it.
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You want to translate this equation so that instead of using the speed of 
charged particles, v, it uses electrical current, I. How do you get electrical 
current out of this? Current is charge, q, divided by the amount of time, t, that 
a charge takes to pass a particular point:

Divide the equation for force by time and multiply it by time, which doesn’t 
actually change the equation. Here’s what you get:

Note that you now have q/t, or current, here. So here’s the force equation in 
terms of current:

F = I(vt)B sin θ

Okay, so what’s I(vt)B sin θ? Something of a mixed bag here — current and 
speed together. But if you think about it, the term vt is just the speed of the 
charged particles making up the current multiplied by the measured time — 
and speed times time equals a distance. So replace vt with L, the distance the 
charged particles go in time t.

 So here’s the force on a wire of length L carrying current I in a magnetic field 
of strength B, where the L is at angle θ with respect to B:

F = ILB sin θ

Cool. How about an example? Look at Figure 4-7, which shows an electric cur-
rent I in a magnetic field B. In physics, current goes in the direction a stream 
of positive charges would take (that convention was defined before scientists 
knew that it was negative charges — electrons — that really flowed to make 
current go). That means you can apply the right-hand rule to the situation 
you see in Figure 4-7 — just treat the direction of I as the direction a positive 
charge is traveling in. (For the right-hand rule, see the earlier section “Finding 
direction with the right-hand rule.”)

All right, what if the current, I, equals 1.0 amp, and the magnetic field, B, 
is equal to 5 teslas? The magnetic force on a wire carrying this current 
increases in proportion to its length. For every meter of wire that you have, 
what would be the resulting force? You start with the formula for force:

F = ILB sin θ

and then divide by the length, L, to find the force per meter:

Force/meter = IB sin θ
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Figure 4-7: 
The force on 

a current in 
a magnetic 

field and the 
associated 
right-hand 

rule.
 

BI

F

BI

F

In Figure 4-7, θ is 90°, and because sin 90° equals 1, you get this case:

Force/meter = IB

 = (1.0 A)(5.0 T) = 5.0 N/m

So you get a result of 5.0 newtons per meter, which works out to be about 
a third of a pound per foot — something to keep in mind if you have electric 
cables running through a 5.0-tesla magnetic field (which, admittedly, is 
pretty rare).

Torque: Giving current a 
twist in electric motors
Scientists saw that magnetic fields exerted forces on electric wires and came 
up with electric motors. From there came electric washers and dryers, wind-
shield wipers on cars, elevators, automatic doors at grocery stores, refrigera-
tors, and much more (not in that order, of course). As you can see, life without 
electric motors would be inconvenient. This section helps you see what makes 
electric motors work, electricity and magnetism-wise — at least in basic terms.

Big-time currents
In the big physics labs, where cables can hold 
huge current (direct current, not alternat-
ing current), you can see something curious: 
When a cable is made up of individual strands 
of wire, those wires create magnetic field, and 

that magnetic field acts on the other wires in 
the cable. The net result is that the cable con-
tracts before your very eyes, getting thinner as 
the magnetic fields act on the currents. 
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Seeing how motors work
Figure 4-8 shows an electric motor, stripped down to its basic components. 
Two permanent magnets of opposite polarity are on either side of the motor. 
This generates a uniform magnetic field in the space between the poles, from 
the north pole to the south pole. In this magnetic field, you place a loop of 
wire, which is free to rotate about the axis in the figure. A battery is con-
nected to the loop, so a current is flowing through the wire in the direction 
shown by the arrows labeled I.

The wire loop is connected to the battery by a strange connection called a 
commutator. This clever little device is a vital part of the motor because it 
ensures that the current always flows in the direction shown in the diagram, 
even when the loop has rotated half a turn. It always connects the side of the 
loop that’s closest to the north pole of the magnet to the positive terminal of 
the battery and vice versa, while leaving the loop free to turn.

 

Figure 4-8: 
Forces, cur-

rent, and 
magnetic 
field in an 

electric 
motor.

 

N

S

I

I

I

I

+
–

B

B

F
F

Because the loop is carrying current, the loop experiences a force in the mag-
netic field. I’ve shaped the loop as a rectangle to make the calculation of the 
force it experiences a little easier.

Two sides of the loop are parallel to the axis of rotation, and two are per-
pendicular to it. The perpendicular wires don’t play a part here because the 
force they experience is directed along the axis of rotation, so they don’t pro-
duce any torque. Also, they’re equal and opposite in size, so you don’t get a 
net force from them.

Most interesting are the two parts of the loop that run parallel to the axis of 
rotation, which are always at 90° to the magnetic field. The left side of the 
wire loop is forced down, and the right side is forced up (you can use the 
right-hand rule to confirm that the directions of the forces in Figure 4-8 are 
correct). This results in a turning force — that is, a torque — that rotates the 
loop of wire. If you connect the loop to an axle, then the loop will force the 
axle to turn — and you can use this turning force for all sorts of things.
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Figuring out the turning force
So how much turning force does an electric motor give you? Torque, as you may 
recall from Physics I, is a twisting force, with the symbol τ. Here’s the formula for it:

τ = Fr sin θ

where F is the applied force, r is the distance the force acts from the turning 
point, or pivot, and θ is the angle between F and r.

In an electric motor, a loop of current is embedded in a magnetic field, B, and 
that field creates forces, F, on each wire running parallel to the axis of rotation 
(as you see in Figure 4-8). The torque on each wire is the force (F = ILB), mul-
tiplied by the distance, d, the force acts from the pivot multiplied by the sine 
of the angle. Because there are two torques, corresponding to the two sides of 
the loop, the total torque, τ, is equal to the following:

The product dL is the height multiplied by the width of the loop of wire — 
that is, the area of the loop. So if you write the area as A, the equation for the 
torque on a loop of wire becomes

τ = IAB sin θ

 In fact, electric motors aren’t really made of a single loop of wire — they’re 
made of coils of wire. So instead of one loop, you actually have N loops, where 
N is the number of coils of wire. That makes the torque into

τ = NIAB sin θ

That’s the total torque on a coil of N loops of wire, each carrying current I, of 
cross-sectional area A, in a magnetic field B, at angle θ as shown in Figure 4-8. 

In physics class, you’re usually asked what the maximum torque would be for 
such-and-such a coil in such-and-such a magnetic field. If you come across a 
situation like that and need to find the maximum torque, that occurs when 
the coil is at right angles to the magnetic field: θ = 90°, so sin θ = 1, or

τ = NIAB 

Try some numbers here. If you have a coil with 200 turns, a current of 3.0 
amps, an area of 1.0 square meters, and a magnetic field of 10.0 teslas, what’s 
the maximum possible torque? Just plug this into the equation:

τ = NIAB = (200)(3.0 A)(1.0 m2)(10.0 T) = 6.0 × 103 N-m

So you have a maximum torque of 6,000 newton-meters, which is very large — 
a car typically generates only about 150 newton-meters.
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Going to the Source: Getting Magnetic 
Field from Electric Current

The earlier sections in this chapter concentrate on how magnetic fields exert 
forces on moving charges, or currents, without worrying too much about 
where the magnetic field came from in the first place. In this section, you 
discover the source of that magnetic field. Here, you see the relationship 
between electricity and magnetism become complete.

 Simply put, just as electric charges are the source of electric fields, which 
exert forces on other electric charges, electric currents are the source of the 
magnetic fields, which exert forces on other electric currents.

In Chapter 3, I take a couple of simple arrangements of charge (the point 
charge and the parallel plate capacitor) and examine the resulting electric 
fields. Now, in this section, I take a few simple arrangements of current (a 
straight wire, a loop, and a tube of current called a solenoid) and examine 
the resulting magnetic fields. Here, you also see how you can use this idea to 
make electromagnets, magnets that you can switch on and off with a switch.

Producing a magnetic field 
with a straight wire
To understand how electric current produces a magnetic field, first take a 
look at the magnetic field from a single wire, as Figure 4-9 shows. Why start 
here? When you know what the magnetic field is from a single wire of cur-
rent, you’re home free in many problems. You can often break down more-
complex distributions of current into many single wires — and then add the 
magnetic fields from the wires as vectors to get the overall result.

 

Figure 4-9: 
The mag-
netic field 

from a 
single wire 
of current.
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Assembling the formula for magnetic field from a single wire
When you make physical measurements of the magnetic field from a single 
wire, you find that the magnetic field, B, diminishes as 1 over the distance, r. 
Therefore, you get this relation (where ∝ means proportional to):

What else can the magnetic field depend on? Well, how about the current 
itself, I? Surely if you double the current, you get twice the magnetic field, 
right? Yep, that’s the way it works, as borne out by measurement, so now you 
have the following:

That’s all you need.

 The constant of proportionality, for historical reasons, is written as μo/(2π), 
which means you finally get this result for the magnetic field from a single wire:

Note that the constant μo = 4π × 10–7 T-m/A.

A right-hand rule: Finding field direction from a wire
 Magnetic field, B, is a vector. If you have a magnetic field from the current in 

a single wire, which way does the B field go? There’s another right-hand rule 
for just this occasion. If you put the thumb of your right hand in the direction 
of the current, the fingers of that hand will wrap around in the direction of the 
magnetic field. At any one point, the direction your fingers point is the direc-
tion of the magnetic field, as Figure 4-10 shows.

 

Figure 4-10: 
A right-hand 

rule shows 
the direction 
of current in 

a wire and 
the resulting 

magnetic 
field.
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Give this a try: Suppose you have two parallel wires. Verify that the force 
between two wires is toward each other if the current in both is in the same 
direction and away from each other if the current in each wire is in opposite 
directions.

Calculating magnetic field from straight wires
How about some numbers? Say you have a current of some 10 amps and you 
want to measure the magnetic field 2.0 centimeters from the center of the 
wire. What is the strength of the B field you’ll get? Here’s your formula:

Plugging in the numbers gives you:

So you get 1.0 gausses, a little more than the Earth’s magnetic field, which is 
about 0.6 gausses.

That was a quick example — how about one that’s a little tougher? Say you 
have two wires, parallel to each other, with current I in each going the same 
way. The wires are a distance r apart. What’s the force on Wire 1 from the 
magnetic field coming from Wire 2?

You know that the force on Wire 1, which is carrying current I in magnetic 
field B, is the following (to see where this formula comes from, check out the 
earlier section “From speed to current: Getting current in the magnetic-force 
formula”):

F = ILB 

All right, but what’s B? That’s the magnetic field from Wire 2, measured at the 
position of Wire 1. Because the wires are r distance apart and Wire 2 is carry-
ing a current I, its magnetic field is this at the location of Wire 1:

Substituting this expression for B into the F = ILB equation, you get this 
result:
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How about getting the force per unit length? That’s F/L, which is

Now try some numbers. Say you have two parallel wires with current I going 
in the same direction — current, I, is 10 amps, and the distance between the 
wires, r, is 2.0 centimeters. Putting in those numbers, you get

So the force on Wire 1 from Wire 2 is 1.0 × 10–3 newtons per meter. Note that 
the force on Wire 2 from Wire 1 is the same magnitude.

Getting centered: Finding magnetic 
field from current loops
Suppose you have a loop of current, such as you see in Figure 4-11. The mag-
netic field from a single loop of wire (even if it has many turns) is not con-
stant over the various points in space.

That variation in the magnetic field is a bit of a problem, because the actual 
equation for the magnetic field from a loop of current is very complicated. So 
physicists do what they always like to do — they simplify. Here, simplifying 
takes the form of measuring the magnetic field at the very center of the loop. 
(In the next section, you see that putting multiple loops together to form a 
tube of current also smoothes out the magnetic field.)

Here, start by noting that the magnetic field at the center of a loop of current 
is equal to the following:

where N is the number of turns in the loop, I is the current in the loop, and R 
is the radius of the loop.

 What’s the direction of the B field at the center of the loop of wire? You 
guessed it — there’s a right-hand rule for that. To apply this rule, just wrap 
the fingers of your right hand around the loop in the direction the current is 
going — your right thumb points in the direction that the B field points in the 
center of the loop.
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Figure 4-11: 
The mag-
netic field 

from a cur-
rent loop.
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Try some numbers. Say that you have a loop of 200 turns of wire and a radius 
of 10 centimeters. What current would you need to get the equivalent of the 
Earth’s magnetic field, 0.6 gausses, in the center?

Plug in the numbers, making sure you first convert from gausses to teslas 
(1.0 G = 1.0 × 10–4 T) and from centimeters to meters. Here’s what you get:
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Solve for I to find the answer:

You’d need 4.8 × 10–2 amps in this current loop to mimic the Earth’s magnetic 
field.

Armed with this knowledge, you can understand how an electromagnet 
works. An electromagnet is simply made of a loop of wire with many turns, 
usually wound around a piece of iron to concentrate the field. When the cur-
rent flows, this device produces a magnetic field. So you don’t have to dig 
in the Earth to find magnetic rocks anymore — you can make a magnet that 
works at the flick of a switch.

Adding loops together: Making 
uniform fields with solenoids
One of the major problems with loops of current is that the magnetic field 
isn’t constant over various points in space, which is why physicists talk in 
terms of the magnetic field at the center of a loop.

To get around that problem, you can assemble many loops of current next to 
each other, just a little distance apart, to create a solenoid. This gives you a 
uniform magnetic field — just as parallel plate capacitors give you a uniform 
electric field (see Chapter 3 for info on parallel plate capacitors). How does 
the magnetic field become constant inside a solenoid? When you put mul-
tiple loops next to each other, as in Figure 4-12a, the edge effects of the loops 
cancel, and you get a uniform magnetic field, as in Figure 4-12b.

What is the magnitude of a solenoid’s magnetic field? If the length of the sole-
noid is large compared to its radius, you get this equation for the magnetic field:

B = μonI

where n is the number of wire loops in the solenoid per meter — that is, the 
number of turns per meter — and I is the current in each turn.

How about the direction of the magnetic field? That’s easy enough: You can 
use the right-hand rule for current loops (see the preceding section) to figure 
out which direction the magnetic field goes in for a solenoid. Just take a look 
at Figure 4-12 to confirm you’re getting it right.

09_538067-ch04.indd   8409_538067-ch04.indd   84 6/1/10   8:11 PM6/1/10   8:11 PM



85 Chapter 4: The Attraction of Magnetism

 

Figure 4-12: 
A solenoid 
produces 
a uniform 
magnetic 

field.
 

(a)

I

(b)

B

B

Here’s an example. Say that you’re conducting some crucial lab experiments 
and need a 1.395-tesla magnetic field. How much current would you need to 
run through a solenoid of some 3,000 loops, 1.00 centimeters in length, to get 
that magnetic field?

Start by solving for the current, I:
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Then just plug in the numbers; note that because you have 3,000 1-centimeter 
loops, you use 300,000 — or 3.0 × 105 loops per meter — as your value for n:

In other words, you need about 3.70 amps, which isn’t too much.
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Chapter 5

Alternating Current and Voltage
In This Chapter
▶ Alternating voltage and current

▶ Alternating current in a resistor, capacitor, or inductor

▶ Impedance and resonance

▶ Diodes and semiconductors

In Physics I, you work with direct-current (DC) circuits, where the current 
is driven by a battery. Here, you take a look at alternating current (AC) in 

circuits. Things get more active, because you’re dealing with alternating volt-
ages, which means that the voltage in any wire changes from positive to nega-
tive and then back again regularly.

You may wonder why alternating current is such a big deal. Many types of 
circuits, including those you tune to receive signals from airborne waves, 
would be impossible without it. But alternating current got its start in a big 
way when people first started sending electricity through power lines. Direct 
current, which doesn’t alternate, could travel only a short distance before 
the resistance of the wires overcame the current. Alternating current, how-
ever, can travel much farther with no problem (it actually helps regenerate 
itself through alternating magnetic and electric fields). That’s why power 
lines always carry alternating current.

You see three types of circuit elements in this chapter: resistors, capacitors, 
and inductors. They all react differently to alternating current. It’s going to be 
quite a ride, but I offer a guided tour of the whole shebang, so sit back and relax.

AC Circuits and Resistors: 
Opposing the Flow

Resistors are the easiest components to handle when dealing with AC cir-
cuits, perhaps because resistors don’t care a bit if the current through them 
is alternating or not — they react in exactly the same way to alternating and 
direct voltages.
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A resistor is a circuit element that literally resists current to some degree. 
Here’s how it works: As I explain in Chapter 3, when there’s a potential dif-
ference across a metal, for instance, the electric field induces a current by 
making the negatively charged electrons flow. As the electrons flow and barge 
their way past the atoms, they jostle the atoms, so the electrons encounter a 
resistance to their progress. Here are a couple of important points:

 ✓ The larger the potential difference you put across the metal, the stron-
ger the electric field and the greater the current.

 ✓ The greater the resistance of the resistor, the less current you get for a 
given potential difference across it.

In an ideal resistor, the current is proportional to the potential difference. 
The size of the potential difference you need to make 1 unit of current flow is 
called the resistance.

In this section, you see how current, voltage, and resistance relate through 
Ohm’s law for AC circuits. I also show you how voltage and current relate 
graphically when you have a resistor in an AC circuit.

Finding Ohm’s law for alternating voltage
 The current through a resistor is related to the voltage across the resistor by 

Ohm’s law:

I is current, V is voltage, and R is resistance measured in ohms (Ω). So if you 
know the voltage across a resistor, you can find the current through it. Simple. 
Now take this picture from direct current to alternating current. To do that, 
upgrade from batteries — that is, sources of constant voltage — to alternating 
voltage sources.

The voltage from an alternating voltage source is not constant — it usually 
varies like a sine wave. You can see what the voltage from an alternating volt-
age source looks like in Figure 5-1. The peak voltage — that is, the maximum 
voltage — is equal to Vo.

Here’s the formula for the voltage from an alternating voltage source as a 
function of time:

V = Vo sin(2πft) 

Here, Vo is the maximum voltage and f is the frequency of the alternating volt-
age source. Frequency is measured in hertz, whose symbol is Hz. Frequency 
is the number of complete cycles (from peak to peak along the sine wave, for 
example) that occur per second.
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Figure 5-1: 
Alternating 

voltage.

 

V0

t

–V0

0

How does this alternating voltage affect Ohm’s law? Not too badly — Ohm’s 
law just becomes

 You can rewrite Ohm’s law in terms of the maximum current, Io, like this 
(because Vo = Io/R). So here’s Ohm’s law for an AC circuit:

Averaging out: Using root-mean-square 
current and voltage
When discussing AC circuits, you usually don’t work in terms of maximum 
voltages and currents, Vo and Io; instead, you speak in terms of the root-mean-
square voltages and currents, Vrms and Irms. What’s the difference?

Root-mean-square is a way of treating circuits with alternating voltages much as 
you’d treat circuits with direct, nonalternating voltages. For example, here’s what 
the power dissipated as heat in a circuit with nonalternating voltage looks like:

P = IV 

And here’s what the dissipated power looks like in a circuit with alternating 
voltage:

P = IoVo sin2(2πft)

Not exactly the same, are they? So physicists talk in terms of the average 
power dissipated by a circuit with an alternating current source — that is, 
averaged over time. That’s a way of looking at alternating-voltage circuits 
much as you’d look at battery-driven circuits. The time average of sin2(2πft) 
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works out to be 1⁄2, which is nice, so the average power dissipated by an alter-
nating voltage circuit is

You can also write this as

And that’s where Irms and Vrms come from, because you can also write this as

Pavg = Irms Vrms

where  and .

 So Irms and Vrms are each the maximum current or voltage, divided by the 
square root of 2.

Staying in phase: Connecting resistors 
to alternating voltage sources
Say that you connect an alternating voltage source to a resistor, as Figure 5-2 
shows. The circle around the ~ symbol represents an alternating voltage source, 
and the zigzag represents the resistor.

 

Figure 5-2: 
Symbols for 
an alternat-
ing voltage 

source 
connected 

across a 
resistor with 
resistance R.

 

R
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 The voltage across the resistor is just the voltage supplied by the alternat-
ing voltage source, so the current through the resistor, at time t, is given by 
Ohm’s law:

Note that if you square both sides of this current-voltage relationship and 
then take the average (remember that the average of sin2(2πft) works out to 
be 1⁄2), then you have a relation between the mean-squared voltage and cur-
rent. If you take the square root, you get the following relation between the 
root-mean-square voltage and current across a resistor:

V
rms = Irms R

This is the root-mean-square equivalent of Ohm’s law in an AC circuit.

 You can see a graph of the current and voltage across the resistor in 
Figure 5-3. Note that the current through the resistor and the voltage across 
the resistor rise and fall at the same time. That means that the current and the 
voltage in a resistor are in phase. (However, the current and voltages through 
and across capacitors and inductors do not mirror each other — that is, 
they’re not in phase, as you see later in this chapter.)

 

Figure 5-3: 
Voltage 

and current 
alternating 

in a resistor.
 

V

I

t

AC Circuits and Capacitors: Storing 
Charge in Electric Field

A capacitor is a device that stores charge when you apply a voltage across it. 
You may have already met the capacitor in Chapter 3, in the form of two par-
allel plates. The more charge you put on the plates, the greater the potential 
difference between them.
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 Generally, for any type of capacitor, the amount of charge stored for every 
unit of potential difference is called the capacitance (measured in farads, a unit 
named after Michael Faraday). The voltage across a capacitor (V) that has 
capacitance C is related to the amount of charge stored on it (Q) by the fol-
lowing equation:

How does a capacitor react to alternating voltage? That’s what you look at in 
this section.

Introducing capacitive reactance
Suppose you connect a capacitor to an alternating voltage source, as 
Figure 5-4 shows (the symbol for a capacitor is two upright bars, meant to 
represent the plates of a parallel plate capacitor).

 

Figure 5-4: 
An alternat-
ing voltage 

source 
connected 

across a 
capacitor 

with capaci-
tance C.

 

C

 Here’s how voltage relates to current when you have a capacitor and an alter-
nating voltage source:

Vrms = Irms Xc

where Vrms and Irms are the root-mean-square voltage and current (the maxi-
mum voltage and current divided by the square root of 2 — see the earlier 
section “Averaging out: Using root-mean-square current and voltage” for 
details). Here, Xc is called the capacitive reactance, and it’s equivalent to the 
resistance, R, in the root-mean-square voltage and current relation for the 
resistor (see the earlier section “Staying in phase: Connecting resistors to 
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alternating voltage sources”). Xc is measured in ohms (Ω), just as R is, and 
it’s equal to the following:

where f is the frequency of the alternating voltage source and C is the capaci-
tor’s capacitance, measured in farads (F).

 You can think of the capacitive reactance as the effective resistance the capaci-
tor puts in the way of the alternating voltage source, much like R for resistors.

Note that the capacitive reactance depends on frequency, which is something that 
resistance doesn’t do. When the frequency (f) is low, the capacitive reactance 
(Xc) is large, and when the frequency is high, the capacitive reactance is small. 
(The equation shows this relationship by putting f in the bottom of the fraction.)

 Why is capacitive reactance high when the frequency is low and low when the 
frequency is high? Intuitively, you can think of it this way: When the frequency 
is high, the capacitor doesn’t have much time between voltage reversals to 
accumulate new charge, so it doesn’t change the voltage across it much. When 
the frequency is low, the capacitor has more time to accumulate charge 
during each cycle and so can change its voltage more.

How about seeing some numbers? Say you have a 1.50-μF capacitor (where 
μF is a microfarad, or 10–6 F), and you connect it across a voltage source whose 
Vrms = 25.0 volts. What is Irms if the frequency of the voltage source is 100 hertz?

First, find the capacitive reactance:

So the capacitive reactance is 1,060 ohms. Now put that to work finding Irms. 
You know that Vrms = Irms Xc, so

Plug in the numbers and solve:

And there you have the current — 2.36 × 10–2 amps. If the frequency were 
higher, the capacitive reactance would be lower, so the current would be 
higher (because the capacitive reactance is the effective resistance).
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Getting out of phase: Current 
leads the voltage
When you have a capacitor in an AC circuit, the current and voltage sine 
waves are out of phase — that is, they’re shifted in time with respect to each 
other: One reaches its peak before the other. You can see the applied voltage 
as a function of time in Figure 5-5 — as well as the actual current that flows in 
the circuit.

 

Figure 5-5: 
Alternating 

voltage and 
current in a 

capacitor.
 

V

I

t

 Notice that with a capacitor, the current leads the voltage — that is, the cur-
rent reaches its peak before the voltage does. In fact, the current leads the 
voltage by exactly 90°, or π/2 radians — that is, one quarter cycle. So when 
you’re graphing the current and voltage from a capacitor in an alternating 
voltage circuit, always remember that the current leads.

 Why does current reach its peak before voltage does? The answer is simple if 
you think about how a capacitor works. Current piles charge onto a capacitor, 
so as long as the current is positive, the capacitor’s voltage increases. When 
the current is decreasing in magnitude, it will still be positive for a while, 
so charge is still being added onto the capacitor; thus, the voltage keeps on 
increasing. Not until the current changes direction and goes negative does 
the charge start to come off the capacitor, causing the voltage to decrease. 
Therefore, the voltage reaches its peak after the current does.

In fact, you say that if the applied voltage is V = Vo sin(2πft), then current, 
which leads voltage by π/2 radians, looks like this — note that its argument 
(in parentheses) reaches a specific value before the voltage does because 
you’re adding π/2 to 2πft:
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Using a little trig, this becomes the following:

I = Io cos(2πft)

So you can see that if the voltage goes as the sine, current goes as the cosine, 
so they’re out of phase.

Preserving power
Here’s something surprising: The average power dissipated by the capaci-
tor is zero. Why? Well, the power used by an electrical component is P = IV. 
Here’s what this looks like for a resistor, where the current and the voltage 
are in phase:

P = IoVo sin2(2πft)

However, for a capacitor, the power looks like this, because the current and 
voltage are 90° out of phase:

P = IoVo sin(2πft) cos(2πft)

The time average of sin(2πft) cos(2πft) is zero (because this product spends 
as much time positive as it does negative), so the average power used by a 
capacitor is zero:

Pavg = 0

 This means that no power is lost to the environment as heat (as is the case 
with a resistor), and in fact, the capacitor spends as much time feeding power 
back into the circuit as it does getting power from the circuit: The capacitor 
feeds power back to the circuit when it’s discharging and its voltage is going 
down, and the capacitor gains energy when it’s being charged up and its 
voltage is increasing.

AC Circuits and Inductors: Storing 
Energy in Magnetic Field

Just as capacitors store energy in an electric field (that is, charges are 
separated by some distance, giving rise to an electric field), so inductors 
store energy — but this time, it’s stored in a magnetic field. For example, 
a solenoid (see Chapter 4) is an inductor, because when you run current 
through it, a magnetic field appears — and doing that takes energy. In fact, 
the electrical symbol for an inductor is just that: a solenoid, or loops of cur-
rent, as you can see in the circuit in Figure 5-6.
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Figure 5-6: 
Adding an 

inductor 
with induc-

tance L to 
a circuit.

 

L

Inductors do the same kind of thing as capacitors: They shift the current rela-
tive to voltage from an alternating voltage source. However, instead of lead-
ing by π/2, the current lags by π/2.

For a capacitor (see the preceding section), the voltage is a function of the capac-
itance and the charge stored on one plate (the charge stored on one plate is 
equal in magnitude but opposite in sign to the charge stored on the other plate):

A similar relationship exists for inductors, as you see in this section. Here, 
I show you how inductors produce a voltage based on the concept of 
Faraday’s law. For that, I introduce the concept of magnetic flux, which you 
get when a magnetic field passes through a loop of wire. I also explain how 
inductive reactance, just like capacitive reactance, opposes an alternating 
current — only this time, voltage comes out ahead of current.

Faraday’s law: Understanding 
how inductors work

 Michael Faraday (the same physicist that farads, the units of capacitance, are 
named after), came up with Faraday’s law, which says the following:

When an inductor suffers a change in magnetic flux, it produces a voltage 
that tends to resist the change.

What does all that mean? This section explains the physics behind inductors, 
starting with the idea of magnetic flux.
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Introducing flux: Magnetic field times area
When a magnetic field goes through a loop of wire, there’s said to be a mag-
netic flux over the area of the loop. You can see how this works in Figure 5-7. 
There, a uniform magnetic field (B) is going through a wire loop with area A, 
which is orientated at an angle θ to the magnetic field.

 

Figure 5-7: 
Magnetic 

flux through 
a loop of 

wire.
 

B
A

B

B

B

B θ

Here’s where it gets strange: In physics, areas are often represented by vec-
tors, and they point directly out of the flat surface whose area they repre-
sent. In other words, the vector B in Figure 5-7 should be familiar — that’s 
just the magnetic field. But the area vector, A, is new — that’s the vector 
that’s perpendicular to the wire loop, and its magnitude is the same numeri-
cal value as the area of the loop.

 Magnetic flux is the strength of the magnetic field multiplied by the component 
of the area vector parallel to the B field. In other words, magnetic flux is a mag-
netic field strength multiplied by an area. When the magnetic field is parallel 
to the area vector, the magnetic flux, whose symbol is Φ, is BA. On the other 
hand, when B is perpendicular to A, no field lines actually go through the wire 
loop, and the flux is zero. Putting all this together, here’s what magnetic flux is 
in terms of B, A, and θ, the angle between them:

Φ = BA cos θ

Inducing a voltage to keep the status quo
Faraday’s law says that if the magnetic flux changes, it induces a voltage 
around the loop; that voltage creates a current in a way that opposes the 
change by creating its own magnetic field.

For instance, say that the magnetic field is decreasing in strength. The wire 
loop wants to keep things the way they are, so it resists change. The wire 
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loop creates a voltage in itself that causes a current to flow — and that cur-
rent creates a magnetic field.

The magnetic field is created in such a way as to preserve the status quo; 
thus, the current flows in a way that adds magnetic field to the applied mag-
netic field — that is, the applied magnetic field is decreasing, so the current 
around the loop flows to create more magnetic field to replace what’s being 
decreased. (The inductor can’t keep the current going forever — it dies away 
quickly, but while it lasts, it creates a magnetic field to supplement the mag-
netic field that’s decreasing.)

You can see the result in Figure 5-8, which shows the way that the current 
would flow if the magnetic field B were decreasing. (Tip: Here’s a chance to 
show off your right-hand rule prowess from Chapter 4. Verify that the direc-
tion of the induced current in Figure 5-8 would flow as shown to add more 
magnetic field to the decreasing applied magnetic field.)

 

Figure 5-8: 
An induced 
current in a 

loop of wire.
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Finding induced voltage using the change in magnetic flux
 How is the voltage induced around the loop of wire related to the change in 

magnetic flux? The voltage looks like this:

That is, the induced voltage is equal to the number of turns in the wire loop 
(N) multiplied by the change in flux (ΔΦ) divided by the time in which the 
change in flux takes place (Δt). The negative sign is there to remind you that 
the induced voltage acts to oppose the change in flux.
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Try some numbers here. Say that you have a solenoid consisting of 40 turns 
of wire, each with an area of 1.5 × 10–3 square meters. A magnetic field of 
0.050 teslas is perpendicular to each loop of wire (that is, θ = 0°). A tenth of a 
second later, t = 0.10 s, the magnetic field has increased to 0.060 teslas. What 
is the induced voltage in the solenoid?

Start by finding the change in flux over a tenth of a second. The flux looks like 
this for each turn of wire:

Φ = BA cos θ

Therefore, the original flux through each turn of wire is this, bearing in mind 
that θ = 0° and the original B field is Bo:

Φo = BoA 

Putting in numbers gives you the following:

Φo = (0.050 T)(1.5 × 10–3 m2) = 7.5 × 10–5 Wb

 Wb stands for weber, the MKS unit of magnetic flux; it’s equal to 1 T-m2.

And the final magnetic flux is equal to this, where Bf is the final magnetic 
field:

Φf = BfA 

Plugging in the numbers gives you the following:

Φo = (0.060 T)(1.5 × 10–3 m2) = 9.0 × 10–5 Wb

So the change in flux is

ΔΦ = Φf – Φo

 = 9.0 × 10–5 Wb – 7.5 × 10–5 Wb

 = 1.5 × 10–5 Wb

This change takes place in 0.10 seconds, and it takes place in all 40 turns
of the solenoid, so the equation  becomes 

.

So there you have it — the voltage the solenoid creates to oppose the change 
in magnetic flux is 6.0 mV (millivolts). That’s what the induced voltage starts 
off at — it decays exponentially in time.
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Finding induced voltage using the change in current
The voltage induced by an inductor looks like this:

However, if you have an electrical inductor — that is, a component in a 
circuit — you don’t typically talk in terms of the change in flux inside that 
component. Instead, you talk about the change in current through the induc-
tor, because that makes more sense in the context of circuits than speaking 
of magnetic flux.

How do you relate current through the solenoid and magnetic flux? Plugging 
in Φ = BA cos θ gives you the following:

And for a solenoid, B = μonI, where n is the number of wire loops in the sole-
noid per meter — that is, the number of turns per meter — μo is 4π × 10–7 
T•m/A, and I is the current in each turn (see Chapter 4 for details). Also, 
because you have only one selenoid, with n turns per meter, then N = 1. 
So you can write the voltage as

If the current is the only thing changing in an inductor that’s part of an elec-
tric circuit, you get this:

 You wrap μonA cos θ up into one number — the inductance of the inductor, 
whose symbol is L, and whose units are henries (which my friend Henry thinks 
is a good idea). So you have this equation to tie the induced voltage to the 
change in current over time:

That’s the result you’re looking for — the inductance connects the change in 
current over time to the induced voltage. And so all inductors you see in cir-
cuits are labeled with their inductance in henries (H). 
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Introducing inductive reactance
For a resistor, voltage and current relate like this: Vrms = Irms R. And for a 
capacitor, you have Vrms = Irms Xc, where Xc is the capacitive reactance:

 So it shouldn’t surprise you that for an inductor, you have another formula 
that relates root-mean-square voltage and current — the maximum voltage and 
current divided by the square root of 2 (for more on these terms, see the earlier 
section “Averaging out: Using root-mean-square current and voltage”):

Vrms = Irms XL

where XL is the inductive reactance — that is, the effective resistance of the 
inductor: XL = 2πfL.

 Note that capacitive reactance gets big when the frequency of the applied volt-
age gets low, but inductive reactance gets big when the frequency gets big — 
opposite to capacitors. Why is this? It’s because inductors act to oppose any 
change in the magnetic fields inside them. And the faster the applied voltage 
changes, the larger the change in flux divided by time — which means that the 
induced voltage can get really large when you go to a very high frequency.

Check out an example using inductive reactance. Say that you have an induc-
tor with an inductance of L = 3.60 mH (millihenries), and you apply a voltage 
with a root-mean-square value of 25.0 volts across it at 100 hertz. What’s the 
induced current in the inductor? Starting with Vrms = Irms XL, you see that

You know Vrms, so you need to figure out XL:

XL = 2πfL

Putting in the numbers you know gives you the following:

XL = 2π(100 Hz)(3.60 × 10–3 H) ≈ 2.26 Ω

And plugging this into the equation for Irms gives you the answer:

So you’d get a pretty hefty 11-amp induced current.
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Getting behind: Current lags voltage
How does the current in an inductor behave when you apply an alternating 
voltage? You can see the result in Figure 5-9, which graphs the current and 
the voltage in an inductor as a function of time. Note that here, current lags 
voltage — the opposite behavior from a capacitor, where current leads volt-
age. When current lags voltage, voltage reaches its peak before current does.

 

Figure 5-9: 
Current lags 

voltage in 
an inductor.
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 Why does current lag voltage in an inductor? It’s because of the following 
relation:

Note that this equation means that the voltage is greatest when the current is 
changing the fastest, because the voltage is directly proportional to the rate 
of change in current. So when the current is the steepest — when current is 
changing from negative to positive — it’s changing the fastest, and voltage 
reaches its highest point. Conversely, when current is flat, it’s not changing 
much at all, so the voltage goes to zero.

As you may expect, current lags voltage by exactly 90° — that is, π/2 in radi-
ans. So if the voltage is V = Vo sin(2πft), then current, which lags voltage by 
90°, looks like this:

Using a little trig, this becomes the following:

I = –Io cos(2πft)
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So that means that for an inductor, the power looks like this, because the cur-
rent and voltage are 90° out of phase:

P = –IoVo sin(2πft) cos(2πft)

Note that, just as for a capacitor, the time average of sin(2πft) cos(2πft) is 
zero, so the average power used by an inductor is zero:

Pavg = 0

The Current-Voltage Race: Putting 
It Together in Series RLC Circuits

Suppose you put a resistor, a capacitor, and an inductor together in the 
same circuit. The circuit in Figure 5-10 is called a series RLC circuit — series 
because all components are connected in series, one after the other (the 
same current has to flow through all of them) and RLC because it’s a resistor-
inductor-capacitor circuit (sometimes also called an RCL circuit). Note that 
the behavior of this circuit doesn’t depend on the order of the circuit ele-
ments, so RLC or CLR would be just as good of a name.

 Why doesn’t the order of a resistor, inductor, and capacitor matter in a circuit? 
Consider the potential difference across each element: Across the resistor, 
the potential difference depends only on the current; across the inductor, it 
depends on only the rate of change of the current; and across the capacitor, it 
depends only on the sum of the current over time (that is, the charge). So the 
potential difference across each element depends only on the current, and the 
same current always flows through each in series, whatever order they’re in.

 

Figure 5-10: 
A series RLC 

circuit.
 

R L C
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All the components are fighting each other over whether the voltage leads or 
lags — the capacitor wants the current to lead the voltage, the inductor wants 
the current to lag the voltage, and the resistor wants the voltage and the cur-
rent to be in phase. Who wins? This section tells you where to place your bets.

Impedance: The combined effects of 
resistors, inductors, and capacitors
Earlier in this chapter, you see the relationship between root-mean-square 
current and voltage for the resistor, the inductor, and the capacitor. When 
you have a circuit combining various elements like resistors, capacitors, and 
inductors, then there’s a similar relation for the circuit as a whole. The root-
mean-square voltage across the circuit, per unit of root-mean-square current, 
is called the impedance.

Phasor diagrams: Pointing out alternating voltage and current
 To tackle the problem of alternating voltages in an RLC circuit, you get a new 

tool: the phasor diagram. In this diagram, you represent the various alternating 
quantities as an arrow that rotates in time — you can see how this works in 
Figure 5-11:

 ✓ The arrow (phasor) on the left represents the alternating voltage V, with 
amplitude V0. The length of the arrow is V0.

 ✓ The arrow’s angle from the horizontal, θ, is called the phase.

Now if you allow this arrow, initially horizontal, to rotate at a constant 
frequency f, then the phase is θ = 2πft. As you can see in Figure 5-11, if you 
project horizontally from the phasor at time t, then you get the value V0 sin θ, 
which is just an alternating voltage. You can represent the current in the same 
way with its own arrow. If the current leads the voltage by 90°, for example, 
then its phasor is rotated 90° further clockwise.

 

Figure 5-11: 
A phasor 

diagram of 
an alternat-
ing voltage.

 

θ
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Adding phasors and finding impedance
In Figure 5-12a, you can see three phasors representing the voltages across 
the resistor (VR), inductor (VL), and capacitor (VC) in a circuit. In this figure, 
they’re shown at time t, when the phase of the voltage across the resistor is 
θ = 2πft. Notice the voltage across the inductor leads the voltage across the 
resistor by 90°, and the capacitor lags by 90°.

 

Figure 5-12: 
(a) Relative 

angles of 
voltages in 

the resistor, 
inductor, 

and capaci-
tor; (b) The 

total voltage 
across the 

resistor, 
inductor, 

and 
capacitor.

 

The total potential difference across all the circuit elements, V, is just the sum 
of the potential difference across each element. So to find V, add the pha-
sors using vector addition (see Chapter 2 for info on adding vectors). Now, 
because VL and VC are always 180° out of phase, they simply point in opposite 
directions, so their sum is a new vector whose length is the difference in the 
amplitude of these two voltages.

The direction of this new phasor (VL + VC) is still 90° from VR, because you’ve 
added two phasors that are both 90° from the phasor of VR. To get the total 
sum, add VR to this new phasor. You can see the sum of the voltages in Figure 
5-12b. Because the phasors are at right angles, you can use the Pythagorean 
theorem to find the resulting length. The squared length of the sum of the 
potential differences is

V0
2 = (VR,0)

2 + (VL,0 – VC,0)
2

where V0, VR,0 , and VC,0 are the amplitudes of the voltages.

Now if you use the relation between the amplitude V0 and the root-mean-square 
voltage Vrms, you can use this to write the root-mean-square total voltage as

Vrms
2 = VR,rms

2 + (VL,rms – VC,rms)
2
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where VR,rms, VL,rms, and VC,rms are root-mean-square voltages across the resis-
tor, inductor, and capacitor respectively.

To simplify this equation, recognize that the following equations are true 
(note that because the current flows through all the components in series, 
only one current, Irms, is in the circuit):

 ✓ VR,rms = Irms R

 ✓ VC,rms = Irms XC

 ✓ VL,rms = Irms XL

Therefore, you can put the equations together and solve for Vrms:

Vrms
2 = Irms

2 [R2 + (XL – XC)2]

 Vrms = Irms [R
2 + (XL – XC)2]1/2

Now you’re getting somewhere — you have Vrms in terms of Irms. This equa-
tion has the form

Vrms = Irms Z

where Z = [R2 + (XL – XC)2]1/2. Very nice. Now you’ve connected Vrms to Irms 
with this new quantity, Z. Z is called the impedance of the whole series RLC 
circuit, and it functions like the effective resistance of the whole RLC circuit.

Determining the amount 
of leading or lagging
For a series RLC circuit, Vrms = Irms Z (see the preceding section to find out 
where this equation comes from). That connects Vrms and Irms in terms of 
their magnitude. But which leads — voltage or current? And by how much?

Look at a voltages-as-vectors graph. In Figure 5-13, I’ve added I (which is in 
phase with the voltage across the resistor, so it overlaps VR) as a thick vector.

 The question of whether voltage or current leads becomes, “What’s the angle θ 
(as shown in the figure) between V and I?” Here’s why:

 ✓ If that angle is positive, the net result of all three components is that the 
voltage leads the current.

 ✓ If that angle is negative, voltage lags the current.
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Figure 5-13: 
The angle 
between I 

and V.
 

VL

VC

V

VR

I
θ

According to the figure, the tangent of this angle is

Note that in the second line, I’ve used the fact that the root-mean-square 
voltage is just the amplitude divided by the square root of 2; then I canceled 
the square root of 2 from the top and bottom of the fraction. Canceling out 
Irms in the last line gives you

 So take the inverse tangent, tan–1, to find θ:

That’s the angle by which voltage leads or lags the current across all three 
elements. If θ = 0°, the voltage is in phase with the current — the effects of 
the inductor cancel out those of the capacitor. If it’s positive, the inductor is 
winning; if it’s negative, the capacitor is winning.

Finding the root-mean-square current
How about some numbers? Say that you have a circuit consisting of a 148-ohm 
resistor, a 1.50-microfarad capacitor, and a 35.7-millihenry inductor. The circuit 
is driven by an alternating voltage source with a root-mean-square voltage of 
35.0 volts at 512 hertz. What is the root-mean-square current through the cir-
cuit, and by how much does the current lead or lag the voltage?
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Start by getting the reactance of the capacitor and the inductor. They look 
like this:

 ✓ Capacitor: 

 ✓ Inductor: XL = 2πfL = 2π(512 Hz)(35.7 × 10–3 H) ≈ 115 Ω

The impedance is

Z = [R2 + (XL – Xc)
2]1/2

Plugging in the numbers for resistance, inductive reactance, and capacitive 
reactance gives you the following:

Z = [148 Ω2 + (115 Ω – 207 Ω)2]1/2 ≈ 174 Ω

And because , you get the following answer for the current:

Quantifying the leading or lagging
Now, does the root-mean-square current lead or lag the voltage? In this 
example, the capacitive reactance (207 ohms) is greater than the inductive 
reactance (115 ohms), so you can say that the capacitor wins here and the 
voltage lags the current. But by how much?

Take the following equation:

 

Just plug in the numbers. Because the resistance is 148 ohms, you find that

 

So take the inverse tangent to find the angle:

θ = tan–1(–0.62) ≈ –32°

And there you have it — voltage does indeed lag the current, just as in a 
capacitor.
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Peak Experiences: Finding Maximum 
Current in a Series RLC Circuit

Earlier in this chapter, the resistor, capacitor, and inductor all have fixed 
values, as does the applied voltage. But all those things can vary: You can 
use electrical components that let you vary their resistance, their capaci-
tance, their inductance, their voltage — even the frequency of that voltage. 
If you’re going to vary anything in an RLC circuit, varying the frequency is 
the most common choice. This section tells you how to find the frequency at 
which you get the most current.

Canceling out reactance
When you let various quantities vary in an RLC circuit, the amount of current 
through the circuit changes. Because Vrms = Irms Z, where Z = [R2 + (XL – Xc)

2]1/2, 
you have the following:

Note that the current through the circuit (Irms) will reach a maximum when Z, 
the impedance, reaches a minimum — that is, when Z is at its smallest value. 
Because Z = [R2 + (XL – Xc)

2]1/2, impedance will reach its minimum value when 
the inductive reactance equals the capacitive reactance:

XL = Xc

At that point, Z = R.

Note that in this case, when the circuit is in resonance and the effects of the 
inductor and capacitor cancel each other out, the current and voltage are in 
phase.

Finding resonance frequency
The frequency at which the current reaches its maximum value is called the 
resonance frequency. At the resonance frequency, the effects of the capacitor 
and the inductor cancel out, leaving the resistor as the only effective element 
in the circuit.
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What is the resonance frequency for any given RLC circuit? You know that

 and XC = 2πfL. 

At the resonance frequency fres, the inductive reactance and capacitive reac-
tance are equal, so the following equation holds:

Rearranging this equation and solving for frequency gives you

And there you have it — that’s the frequency at which the current reaches its 
maximum value for any given L and C values.

Semiconductors and Diodes: 
Limiting Current Direction

One of the great leaps of the technological age happened when people started 
combining the resistor and the capacitor with some new circuit elements made 
from materials that were semiconductors. The combination was an extremely 

Resonance: Getting big vibrations
Resonance is not just a feature of electrical 
circuits; it’s a general feature of oscillating 
systems — pendulums and even bridges and 
skyscrapers can experience it. The oscillating 
system may wobble with a particular amplitude 
when driven at a particular frequency, such as 
when you apply an AC voltage of frequency f to 
your circuit or when an earthquake shakes a 
skyscraper.

If you want to make things wobble the most, it’s 
not a case of driving at the highest frequency 

that you can. The system likes to wobble at 
a certain natural frequency, and if you drive 
it at this frequency, then you get the biggest 
response — this is the resonance frequency. 
There’s a particular frequency in the circuit 
that gives the greatest amplitude current if you 
apply the voltage at that frequency. (By the way, 
anyone designing a skyscraper will make sure 
that its resonance frequency is different from 
the frequency at which earthquakes shake!)
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powerful one. These circuits, combining resistors, capacitors, and semiconduc-
tor devices, eventually became miniaturized into integrated circuits, or micro-
chips, which form the basis for many devices that have changed the way people 
live — most notably the computer. (So the next time someone complains you’re 
spending too much time on the computer, tell them you’re doing physics.)

In this section, I first introduce semiconductors so you understand their spe-
cial properties. Then I introduce an example of a circuit element made from 
them: the diode. This simple device allows current to pass through it in one 
direction only — it’s effectively a one-way valve for electrical current.

The straight dope: Making semiconductors
Normal silicon (Si) has a crystalline structure, with four electrons from each 
atom taking part in bonding each atom to its neighbors. Those electrons 
are in the outermost orbits of the silicon atom, and because they’re impor-
tant in creating the crystalline structure, they’re not available to conduct 
electricity — hence, normal silicon is an insulator.

But by being clever, you can introduce small amounts of impurities (such as 
one part in a million) that give the silicon conducting properties. Here are 
two types of semiconductors you can create:

 ✓ N-type semiconductors: Adding some phosphorus (P) atoms allows the 
silicon to conduct electricity. Phosphorus has five electrons in its outer-
most orbit, so when you dope silicon with phosphorus, the phosphorus 
atoms join the silicon crystal structure, which binds each atom to its 
neighbors using four electrons. That means that there’s one electron 
from the phosphorus left over — and that electron is free to roam.

  The resulting doped silicon is called an n-type semiconductor, because 
the charges that carry current in it — the electrons contributed by the 
phosphorus — are negative.

 ✓ P-type semiconductors: On the other hand, you can dope silicon with 
other elements, such as boron (B), which has only three outer electrons 
per atom. When the boron binds to the silicon-crystal structure, one 
electron is missing, so there’s a “hole” in the number of electrons.

  That hole can move from atom to atom — and each hole produces a posi-
tive charge, because it’s formed from a deficit of electrons. Because the 
holes (that is, the localized places where you have a missing electron) can 
move throughout the semiconductor, the charge-carriers in this kind of 
doped silicon are positive. When you have a material with mobile holes, it’s 
called a p-type semiconductor, because the free charge-carriers are positive.

That’s the whole charm of semiconductors — in addition to negatively 
charged carriers (electrons), you can also have positively charged carriers 
(the holes).
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One-way current: Creating diodes
You can create diodes — one-way current valves — by putting some p-type 
semiconductor next to some n-type semiconductor (see the preceding sec-
tion for info on types of semiconductors). In the case at the top of Figure 5-14, 
voltage is applied with the positive voltage connected to the p-type semicon-
ductor, and negative voltage is connected to the n-type semiconductor.

In this case, charge flows freely across the junction between the p-type and 
n-type semiconductors, because the positive holes on the left are repelled 
from the positive terminal and travel to the right, and the electrons on the 
right are repelled by the negative terminal, so they travel to the left. The 
holes and electrons meet at the junction, and the electrons fill the holes — 
so current can flow. The negative terminal provides more electrons for this 
process, and the positive terminal removes them, creating more holes.

 

Figure 5-14: 
Semi-

conductor 
diodes at 

work.
 

+

n-typep-type

+

n-typep-type

On the other hand, if you reverse the terminals of the battery, no current will 
flow through the diode, as the bottom of Figure 5-14 shows. That’s because in 
this case, the battery drives the mobile charge-carriers away from the junc-
tion. As you can see in the figure, the positive holes travel to the left in the 
p-type semiconductor — away from the junction — and the electrons in the 
n-type semiconductor travel to the right, also away from the junction.

What’s left at the junction are the immobile negative charges in the p-type 
material and the immobile positive charges in the n-type material. Those 
charges don’t move, so they set up an electric field that counteracts the elec-
tric field set up by the battery — with the net result that all current stops.
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In this part . . .

In this part, you take a look at waves, specifically sound 
and light waves. You get the lowdown on sound waves 

and then spend a few chapters on how light waves work, 
including what happens when they hit mirrors, bend 
through lenses and diamonds, and pass through slits. 
Light wave behavior is one of the favorite topics of 
physicists, and in this part, you see why.
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Chapter 6

Exploring Waves
In This Chapter
▶ Examining the role of waves in moving energy

▶ Looking at wave properties and parts

▶ Graphing waves and describing waves mathematically

▶ Understanding wave behavior

Waves are all around you — water waves, sound waves, light waves, 
even waves in jump ropes. (Do the waves in that starlet’s hair count? 

Not in this chapter.) Waves are such a huge topic in Physics II that I cover 
them in detail in the next five chapters. In fact, even matter travels in waves 
and is subject to the same kinds of effects as light waves, including reflection 
(see Chapter 12 for details on this surprising behavior).

In this chapter, you investigate just what waves are and how they work — 
and how to describe them mathematically (physicists love describing things 
mathematically). You work with formulas and get to do a little graphing, too. 
I wrap up by describing some typical wave behavior. Later, in Chapters 7 
through 11, you work with specific types of waves: sound and light.

Energy Travels: Doing the Wave
 Understanding waves begins with being able to recognize their character-

istics. Here are a few key features of waves that you can discover just from 
watching water waves:

 ✓ A wave is a traveling disturbance. Waves don’t occur when a surface 
such as water is calm. Suppose you and some friends are in a sailboat on 
a lake when a motorboat roars past, sending your boat bobbing. First, 
you notice that the surface of the lake is now filled with waves and rip-
ples. The water was disturbed by the motorboat, and that disturbance is 
being sent all around the lake. When a lake is calm, you don’t have any 
waves; when a lake is disturbed, you have waves. So something must 
disturb the water in order to create water waves. The thing that’s dis-
turbed by a wave is called the medium.
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 ✓ A wave transfers energy. All waves transfer energy. In fact, waves are 
one of the primary means of getting energy from Point A to Point B. 
Continuing with the earlier example, you realize your sailboat is being 
lifted up and down in the wake of the motorboat. Lifting the boat takes 
energy — elevating the boat adds potential energy to it. The humps of 
water in the waves surrounding you all have potential and kinetic energy.

 ✓ A wave doesn’t cause bulk transport of the underlying medium (if 
there is an underlying medium). As a wave travels, the medium wob-
bles, or oscillates, about its undisturbed position, but it doesn’t shift on 
the whole — this is what I mean by “no bulk transport.” Each part of the 
medium oscillates about its resting state without changing on average.

  For example, suppose you notice a leaf floating on the lake, going up and 
down with each passing wave. Even though the waves look like they’re 
traveling away from your boat, the leaf isn’t moving anywhere except up 
and down. That’s because the water isn’t really traveling across the lake — 
the wave is. The wave seems to move on to the next patch of water, then 
the next, and so on, without making any one part of the water travel 
across the lake. That is, there’s no bulk movement of the water. No mass 
of water is moving across the lake; each wave just moves each succes-
sive region of water up and down as it passes.

Waves — these traveling disturbances carrying energy — come in two types: 
transverse and longitudinal. The kind depends on which direction the energy 
disturbance is traveling. This section takes a look at both wave types.

Up and down: Transverse waves
 A transverse wave moves up and down, creating peaks of movement. The 

motion of this type of wave disturbance is perpendicular to the direction the 
wave is moving in. If you’ve ever had a vacuum cord get stuck while you were 
vacuuming and yanked on the cord to dislodge it, you saw a transverse wave 
in action. When you whipped the cord up and down to free it, waves traveled 
up and down the cord a little something like Figure 6-1.

 

Figure 6-1: 
A trans-

verse wave.
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Back and forth: Longitudinal waves
 In longitudinal waves, the motion of the wave disturbance is parallel to the 

direction the wave is traveling in. As the different parts of the medium wobble 
back and forth in the direction of the wave’s travel, they cyclically squash and 
stretch along the wave. A physicist may call a squashing of the medium com-
pression and the stretching decompression.

This kind of wave can travel only in a medium that’s capable of being 
stretched and squashed — that is, an elastic medium. For example, a spring 
can support compression and decompression down its length, but a string 
can’t. Figure 6-2 depicts a longitudinal wave traveling in repeating cycles of 
compression and decompression, or pulses.

Most objects are elastic to some extent, so you can send pulses through 
them. Pulses in the air are referred to as sound, which carries the energy 
from far-off disturbances to your ears. I discuss sound in Chapter 7.

 

Figure 6-2: 
A longitudi-

nal wave.
 

Motion of the medium

Direction of travel of the wave

Compression
Decompression

Wave Properties: Understanding 
What Makes Waves Tick

All waves, no matter which direction they’re traveling in, have specific parts 
and properties, such as periods and frequency. In this section, you discover the 
details of a wave’s basic parts and properties. You also see how all the parts of 
a wave relate mathematically, as well as what a wave looks like in graph form.

Examining the parts of a wave
To understand waves, you need to have a good grip on the terminology. (How 
else can you discuss waves with your fellow physicists-in-training?) Take a 

12_538067-ch06.indd   11712_538067-ch06.indd   117 6/1/10   8:20 PM6/1/10   8:20 PM



118 Part III: Catching On to Waves: The Sound and Light Kinds 

look at Figure 6-3, which lists some important parts of a wave. The subsec-
tions that follow delve into these parts in greater detail.

 

Figure 6-3: 
The parts of 

a wave.
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Wavelength
The distance between one point of a wave and the next equivalent point — 
such as between neighboring peaks or between consecutive troughs (the 
lowest points on a wave) — is known as the wave’s wavelength. For a longitu-
dinal wave, the wavelength is the distance from one compression to the next.

Nodes are specific locations where a wave crosses the axis; there are always 
two nodes per wavelength. The parts of the medium that are at the nodes of 
the wave are in their resting, undisturbed positions.

 The symbol for wavelength is λ. You usually measure the distance of a wave-
length in meters — unless you’re dealing with light waves, which are typically 
measured in a much smaller unit called nanometers (nm), which are billionths 
of a meter.

Amplitude
A wave is a traveling disturbance, and the wave’s amplitude tells you how 
big that disturbance is. Amplitude represents different things depending on 
whether you’re working with a transverse wave or a longitudinal wave. The 
amplitude of a transverse wave is a measure of the distance from the axis to 
a peak, or from the axis to a trough (that should be the same distance). In 
other words, amplitude is a measure of how high a wave is (see Figure 6-3). 
Generally, the amplitude of a wave is half of the peak-to-trough distance.

For longitudinal waves, such as sound waves, amplitude corresponds to the 
pressure in each pulse. I explain the amplitude of sound waves in Chapter 7.
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 The symbol for amplitude is A, but the units of measurement for amplitude 
vary depending on which kind of wave you’re dealing with. For example, the 
amplitude of a water wave on the surface of a lake is measured in units of dis-
tance (such as meters or feet) because you’re trying to find out how high the 
wave is. The amplitude of a light wave, on the other hand, which alternates 
between magnetic and electric fields, can be measured in teslas and volts per 
meter (although the amplitude is truly tiny amounts of both).

Periods and cycles
Waves are periodic, alternating and repeating in a certain amount of time, as 
you can see in Figure 6-3. If you go from one part of a wave to the same part 
again — like from peak to peak in a transverse wave or compression to com-
pression in a longitudinal wave — you’ve gone through one cycle. In other 
words, if you see five peaks or compressions go past, you know that five 
wave cycles have been completed.

The time it takes to complete a cycle is referred to as the wave’s period. So if 
you see a peak of a transverse wave, wait a moment, and see another peak, 
you know that one period has passed. You measure periods (symbol T) in 
seconds.

Frequency
Frequency measures the number of times something happens per second. 
Wave frequency is measured in cycles per second. And because cycles are 
just numbers, that means the unit for frequency is s–1. Of course, s–1 goes by 
another, more common name: hertz (symbol Hz).

The symbol for frequency is f. To calculate frequency, just take 1 over the 
period (T), like so:

So, for example, a wave that has a period of 1⁄100 seconds has a frequency of 
100 cycles per second, or 100 Hz.

Relating the parts of a 
wave mathematically
Knowing the parts and properties of waves is all well and good, but you also 
need to be able to do something with them. That’s where the math comes 
in. By applying a little math to what you know about waves, you’re in a posi-
tion to say more about them. For instance, you can tell someone how fast a 
particular wave travels, or you can figure out the wavelength. This section 
shows you how.
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Getting a general formula for wave speed
Speed is the distance traveled divided by the time it took to go that distance, 
so the speed of a wave is simply the distance that a peak travels divided by 
the time it took to do so. In other words, you divide the wavelength by the 
period like this:

 Because the frequency, f, is 1/T, you can write the basic equation for calculat-
ing the wave speed as

v = λf

A short message from our sponsors: Calculating 
wavelength of a radio signal
Try putting some numbers in the general wave speed formula. Say that you’re 
listening to a radio station, 1230 AM on your dial. What’s the wavelength of 
that radio signal?

The frequency of the wave is 1230, but 1230 what? AM frequencies are mea-
sured in kHz (kilohertz), so that’s a frequency of 1,230 × 103 Hz, or 1.23 × 106 Hz.

Because v = λf, you can rearrange the formula to solve for wavelength:

All you need now is the speed of the radio signal. Radio signals travel at the 
speed of light (v ≈ 3.00 × 108 meters per second), so plug in the numbers and 
solve:

So the wavelength is about 244 meters, or 800 feet. The next time you’re listen-
ing in on a frequency of 1230 kHz, you can say you’re listing in on a wavelength 
of 800 feet. Or if you really want to blow your mind, think of the radio signal as 
a wavelength 800 feet long coming at you 1.23 million times a second. Whoa!

A tense situation: Figuring out the speed of a transverse wave
Sometimes, you can say more than just v = λ/T — you can figure out what the 
wave speed is for a given setup using properties of the system itself. For exam-
ple, if you have a string under tension, you can calculate the speed of waves in 
the string given only the force of tension, the mass of the string, and its length.
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Actually, you don’t even need to know the mass and the length of the string — 
you just need to know the mass per unit length, μ, which is

where m is the mass in kilograms and L is the length in meters.

At tension F (where F stands for force), the speed of transverse waves in the 
string turns out to be

That makes sense — the stronger the tension (the larger F is), the faster the 
waves go, and the heavier the string (the larger μ is), the slower the waves go.

Say that you have string that’s 20 grams per meter, and it’s under a tension of 
200 newtons. How fast does a transverse wave travel in the string if you pluck 
it? You know that v = (F/μ)1/2, so plug in the numbers (after converting to kilo-
grams) and solve:

So the speed of the transverse wave is 100 meters per second.

Watching for the sine: Graphs of waves
 Graphing a wave gives you an idea of how a wave changes over time. When 

you graph a wave, whether it’s transverse or longitudinal, you’re really plotting 
the magnitude of the disturbance. That may be the magnitude of the string dis-
placement or the magnitude of the pulsing water pressure. Because you’re just 
graphing magnitude, you can graph both transverse and longitudinal waves as 
sine waves.

Consider the correlation between sine waves and transverse waves: Transverse 
waves (the kind you create when you whip a string up and down) look just like 
sine waves. There’s a good reason for that — they are sine waves!

Longitudinal waves are pulses in the direction of travel, which means they 
don’t look like sine waves. But if you graph the magnitude of the disturbance 
along a longitudinal wave — pulses and all — you find that a longitudinal 
wave from a continuous source looks like a sine wave.
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 Picture a long succession of longitudinal waves traveling through water. Each 
pulse corresponds to a peak of a sine wave, and the space between pulses cor-
responds to a trough. So in this case, when you plot the pressure in the wave 
due to a passing longitudinal wave, you actually get a sine wave (if, of course, 
the wave source creates normal longitudinal waves).

In this section, I explain how to graph a sine wave that accurately describes a 
physical wave.

Creating a basic sine wave
So what exactly do you need to graph a real-world wave? First, you have to 
know what your axes are. Because you’re measuring the magnitude of the 
disturbance created by the wave, your vertical axis is displacement (y). And 
because you want to know how long that disturbance occurs, your horizontal 
axis is time (t).

You want to complete one cycle of the sine wave you’re drawing in one cycle 
of the actual wave. A single cycle of a wave takes place in one period, and a 
single cycle of a sine wave takes place in 2π radians. That means that in one 
period, you want the sine wave to go through 2π radians, as Figure 6-4 shows. 
You can use this expression for the sine wave:

 

Figure 6-4: 
The basic 
sine wave 

with 
period T.

 

y

tT 2T 3T

Note that when t = 0, y = 0. And when t = T, you have y = sin(2π), which equals 0.

You can get frequency into the equation with a little substitution, because you 
can relate a wave’s period and frequency like so (as I explain in the earlier sec-
tion “Frequency”):
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Substitute f into the expression for the sine wave to write the expression as

y = sin(2πft)

Adjusting the equation to represent a real-world wave
The wave equation y = sin(2πft) is fine, but you probably need to stretch or 
shift your graph so it accurately depicts your real-world wave. Otherwise, the 
graph doesn’t give you any information on the strength of the wave or where 
it was in its cycle when you started taking measurements.

You want your graphed wave to have its own amplitude, A, to show how big 
the disturbance is — a bit tricky to manage because sine waves oscillate 
between –1 and 1. Multiply the sine wave by A to get the following:

y = A sin(2πft)

Of course, the wave’s displacement doesn’t have to be at 0 when t = 0. In 
Figure 6-5, the wave starts off at a nonzero value when t = 0, so you need to 
adjust your wave expression to take this shift into account. Good news: You 
can adjust the sine’s argument (the value you’re taking the sine of) by an 
angle, called the phase angle, to make your graphed wave match the behavior 
of the actual wave.

 

Figure 6-5: 
An offset 

wave.

 

y

t

Δt

original wave

shifted wave

y=A sin(2πft)

y=A sin(2πf(t+Δt))

 Here’s how to add a phase angle to the expression for a wave (note that θ can 
be positive or negative):

y = A sin(2πft + θ)
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You can also write this equation in terms of a time shift, Δt. Here’s how:

y = A sin(2πf(t+Δt))

This means that the original wave is shifted in time so that a peak, originally 
happening at time t, now happens Δt earlier in the shifted wave.

Note that if θ = π/2, you get a cosine wave:

 If you shift the wave by one whole period, it looks exactly like the original. You 
can see this is true because you know from basic trig that sin(x + 2π) = sin(x). 
So if you shift the wave by Δt = T, the wave becomes

y = A sin(2πf(t + Δt))

   = A sin(2πft + 2πfT)

   = A sin(2πft + 2π)

   = A sin(2πft)

and you have your original wave back again.

When Waves Collide: Wave Behavior
Most waves can’t just travel forever without hitting something — some 
object, or maybe another wave — and that’s what makes wave behavior 
interesting in the real world. For example, when light waves travel through a 
glass lens, the waves bend, so people can create eyeglasses and telescopes 
and binoculars. Here are some important wave behaviors:

 ✓ Refraction: When waves enter a new material, they can alter their 
behavior — change their wavelength, for example, or alter their direc-
tion. Light waves do this in lenses and prisms, water waves do this in the 
shallows, and sound waves do this when traveling from air to glass. This 
process is called wave refraction, and I cover refraction of light waves in 
Chapter 9.

 ✓ Reflection: When waves hit something, such as when light waves hit 
a mirror, they can bounce off, a process known as reflection. Sound 
waves can reflect off walls, radio waves can reflect off layers of the 
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atmosphere, TV signals can reflect off buildings, and so on. You can find 
lots more on reflection in Chapter 10.

 ✓ Interference: Waves can also hit each other, and when they do, they 
interfere — and the resulting process is called interference. For example, 
you may have seen the ripples from two stones thrown into a lake 
overlap — and the result is called an interference pattern. The waves’ 
amplitudes can add to each other or cancel each other out. You can find 
a great deal on interference in light waves in Chapter 11.
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Chapter 7

Now Hear This: The 
Word on Sound

In This Chapter
▶ Exploring the nature of sound

▶ Determining how quickly sound moves through gases, liquids, and solids

▶ Adding sound intensity and decibels to the picture

▶ Taking a look at the behavior of sound waves

Sound is all around you — the sound of talking, the sound of leaves rustling, 
the sound of traffic, even The Sound of Music. Sound travels in perfect longi-

tudinal waves (that is, the wave’s disturbance travels in the same direction as the 
wave; see Chapter 6 for details). As such, sound waves are a fit topic for physicists.

You get the lowdown on sound in this chapter — how it works, what it can do, 
and what it can’t do — starting with a look at sound waves as vibrations. You 
then explore ideas such as the speed of sound, loudness, echoes, and more.

Vibrating Just to Be Heard: 
Sound Waves as Vibrations

Sound is a vibration in the medium through which the sound is traveling — air, 
water, metal, or even stone. But it’s not just any vibration; it’s actually a vibration 
caused by a vibration. A vibrating object makes the air surrounding it vibrate, 
too, and those vibrations travel away from the vibrating object through the air.

Say you’re dealing with the diaphragm in a loudspeaker (that’s the part that 
vibrates) and it’s vibrating furiously, pumping out some loud music. Each 
time the diaphragm pushes against the air, it compresses the air near it. That 
creates a condensation in the air. This kind of condensation is a small, high-
pressure region in the air — a local pulse. As soon as the speaker diaphragm 
creates the condensation, that condensation starts traveling off into the air.
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Conversely, when the diaphragm springs back, that movement creates a 
small low-pressure region, known as a rarefaction, in the air around the dia-
phragm. Just as with the condensation, as soon as a rarefaction is created, it 
starts traveling away from the loudspeaker through the air. Those alternating 
condensations and rarefactions travel through the air as a longitudinal wave — 
much like the pulses you can send through a spring when you rapidly com-
press and decompress one end of it.

 So there you have it: Sound is really a longitudinal wave that travels through 
the air in a series of condensations and rarefactions — that is, pulses. In 
Figure 7-1, I’ve magnified the column of air that shoots out from the loud-
speaker so the air molecules are actually visible. Notice how the air molecules 
are close together in the condensations and spread out in the rarefactions.

 

Figure 7-1: 
Pulses in 
a random 

sound wave.
 

 Normal music is made up of many different sound waves, so the pulses you 
see coming from the loudspeaker have different amplitudes and different fre-
quencies. When these waves enter your ear, the oscillation of the air causes 
your eardrum to vibrate, and your brain interprets these sounds as having 
pitch and loudness. Here’s how a sound wave’s amplitude and frequency 
affect what you hear:

 ✓ Amplitude: If a sound wave entering your ear has a large amplitude, 
then you hear a louder sound.

 ✓ Frequency: If a sound wave entering your ear has a high frequency, then 
you hear a high-pitched sound. But this can vary from person to person 
because the sensitivity of different people’s ears to different frequencies 
of sounds varies.

 The human ear can hear a wide range of sound frequencies. Newborns, for 
example, can hear from 20 hertz (Hz) up to an astounding 20,000 Hz. As you age, 
you can’t hear the upper range quite so well. An adult, for example, may hear 
only up to 14,000 Hz. Sound with a frequency higher than 20,000 Hz is called 
ultrasonic, and sound with a frequency lower than 20 Hz is called infrasonic.
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When you have sound that comes out of a loudspeaker in a pure, unwaver-
ing tone, the condensations and rarefactions all have the same strength, and 
they’re all evenly spaced, as in Figure 7-2. The figure shows the waves of 
condensation and rarefaction of the molecules (not actual size!). You can see 
that as the molecules are displaced back and forth, they go through cycles 
of high and low pressure. Where the molecules are squeezed together in a 
condensation, the pressure is high, and when they’re stretched apart in a 
rarefaction, the pressure is low — I’ve plotted the wave’s fluctuation in the 
following graph.

 

Figure 7-2: 
A constant 

tone.
 

λ

p

x

When you have a single tone coming from a loudspeaker, you can speak of 
the wavelength of the sound, λ, and its frequency, f. Regular sound waves, 
like the one in Figure 7-2, have so many cycles per second, which is their 
frequency.

Cranking Up the Volume: Pressure, 
Power, and Intensity

The loudness, or volume, at which you hear a sound is a direct result of the 
sound wave’s amplitude — that is, the amount of pressure in each pulse in a 
sound wave. The greater the pressure amplitude, the greater the volume.

Volume is really a subjective measure; a sound may seem louder to one 
person than to another, based on how good his or her hearing is. But in 
physics, you use objective measures, such as pressure amplitude and sound 
intensity, to talk about the sonic boom that rattled your windows or the rock 
concert that still has your ears ringing.
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 Amplitude and sound intensity are related. Here’s how: Making a sound wave 
takes energy, and making a continuous wave takes a flow of energy over time: 
power. As a wave propagates and spreads out in the surrounding space, this 
power is spread over a larger area, so sound can become weaker with dis-
tance. The amount of power flowing through a unit area is its intensity. Lower 
intensity causes less energy to enter your ear every second — and with less 
sound power entering your ear, the wave has a smaller amplitude, because 
making a wave with smaller amplitude takes less power. That’s why sounds 
become quieter with distance.

In this section, I discuss the amplitude, power, and intensity of sound waves. 
Intensity is related to decibels, a way to compare sounds objectively, so I 
cover decibels here as well.

Under pressure: Measuring the 
amplitude of sound waves
If you wanted to measure the pressure amplitude of sound waves (or if some 
crazy professor said you had to), you could start with the setup in Figure 7-3. 
There, a loudspeaker is sending a pure-tone sound through a tube that has 
many pressure meters at the top of it. (A pure-tone sound is made up of just 
one frequency, so it’s a monofrequency sound.) Using this setup, you can 
measure the amplitude of the traveling sound wave by photographing the set-
tings of all the pressure meters at once. This snapshot can also tell you that 
the pressure in the whole wave forms a sine wave that’s traveling to the right.

 

Figure 7-3: 
Measuring 

sound pres-
sure in a 

sound wave.
 

Suppose the loudspeaker in Figure 7-3 is set to create a monofrequency wave 
at about the volume of human speech, and you need to find the maximum 
amplitude. Pressure is measured in pascals (Pa), and it takes 1.01 × 105 Pa to 
make up the pressure of the atmosphere at sea level. The maximum pressure 
amplitude of human speech is about 3.0 × 10–2 Pa, or an amazing 3.0 × 10–7 
atmospheres! That’s how sensitive the human ear is. Human speech, which 
can sound very loud, is actually made up of very weak pulses of air. So the 
pressure amplitude of a sound wave of human speech is relatively small.
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 Even though sound is a longitudinal wave, you can graph its pressure ampli-
tude as a sine wave, because you’re measuring the displacement of air (it’s 
just like the amplitude of a transverse wave in a string, because what you mea-
sure there is the actual displacement of the string). For a sound wave, conden-
sations form the peaks of the sine wave and rarefactions form the troughs.

Introducing sound intensity
Sounds waves transfer a disturbance in a medium from the source to an 
observer. That means energy is transferred from the source to some target. 
Leaves rustling in the street transfer a relatively small amount of energy, but 
some sounds are powerful enough that they can cause damage. Sonic booms, 
for example, are strong enough to break windows.

So how much energy is transferred by a sound wave in a given amount of 
time? That’s a measure of power, which is measured in watts (abbreviated 
W). Power is just energy divided by time:

In fact, what’s usually measured is the power per unit area some distance 
from the sound source, as Figure 7-4 shows. This quantity, power divided by 
area, is the sound wave’s intensity. Sound intensity is measured in watts per 
meter, and the equation for finding it is as follows:

 

Figure 7-4: 
Sound 

intensity is 
the power 
of a sound 

wave 
divided by 

the area.
 

A

In this section, you calculate sound intensity and see how it relates to decibels.
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Sound intensity in terms of total power of a sound wave
The intensity of a sound wave differs depending on how far away you are from 
a sound source. That’s because sound expands in a sphere from a sound source, 
and the power of a sound wave is distributed over the whole area of that sphere. 
The following equation shows how the surface area of a sphere (A) grows as you 
get farther away from the sound source — that is, as the radius increases:

A = 4πr2

where r is your distance from the sound source.

If you know the total power of a sound wave as it comes out of the source, 
Ptotal, and you know that sound wave is allowed to expand in a sphere, you 
can write the intensity as a function of r like so:

Thus, the intensity of a sound wave drops off by a factor of 4 (or 22) every 
time you double your distance from the sound source.

For example, say you have a sound source that pumps out 3.8 × 10–5 watts 
of sound power. What’s the sound intensity 1 meter from the sound source? 
Well, the total power of the sound energy the source sends out is 3.8 × 10–5 
watts. At r = 1.0 meters, you have this:

So the sound intensity at 1 meter is 3.0 × 10–6 watts per square meter. That’s 
the approximate sound intensity of human conversation.

Measuring sound in decibels
Decibels are a comparison of one sound intensity to a reference intensity on 
a logarithmic scale. In plain English, that means decibels tell you how much 
louder or softer a sound is than a standard sound, such as the threshold of 
hearing (that’s the reference sound physicists usually use).

Here’s the equation for decibels of a particular sound intensity:
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where log refers to the logarithm to the base 10 (it’s on your calculator); Io 
refers to the reference sound you’re measuring against (usually the threshold 
of hearing, 1.0 × 10–12 W/m2); and I is the sound intensity you’re measuring. 
The abbreviation for decibels is dB.

How about some representative numbers here? Table 7-1 lists some common 
decibel measurements from 1 meter away from the source, comparing the 
sound to the threshold of human hearing.

Table 7-1 Intensity and Decibels of Common Sounds

Sound Intensity Decibels

Threshold of hearing 1.0 × 10–12 W/m2 0 dB

Leaves rustling 1.0 × 10–11 W/m2 10 dB

Whisper 1.0 × 10–10 W/m2 20 dB

Normal conversation 3.2 × 10–6 W/m2 65 dB

Car with no muffler 3.2 × 10–2 W/m2 100 dB

Say you have a gasoline-powered lawn mower that sounds especially loud, 
and you want to find out just how loud it is. You measure the sound intensity 
at 1 meter from the lawn mower as 6.9 × 10–2 W/m2. How many decibels is 
that compared to the threshold of hearing?

The threshold of human hearing has a sound intensity of 1.0 × 10–12 W/m2, so 
when you plug that into the β = 10 log(I/Io) formula, you have

Your lawn mower generates about 108 dB at a distance of 1 meter away from the 
sound source. Hmm. Maybe you should start wearing earplugs when you use it!

Calculating the Speed of Sound
Sound traveling through the air moves pretty fast, but it can move even faster 
depending on which medium it’s moving through (another gas, a liquid, or a 
solid). Of course, the only way to really know how fast it’s traveling is to cal-
culate its speed.
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The speed of a wave is frequency multiplied by wavelength, which looks 
like this:

v = λf

However, that basic equation doesn’t help you much because the speed of 
sound can vary depending on the temperature of the medium. But never 
fear — in this section, I introduce some speed-of-sound formulas that account 
for both temperature and medium. (And for some real-world values, check 
out the nearby sidebar titled “At-a-glance stats for the speed of sound.”)

Fast: The speed of sound in gases
 The speed of sound is lowest when it’s traveling through a gas. To calculate 

the speed of sound in an ideal gas (which approximates air given the tempera-
ture of that gas), you rely on an equation that may look familiar to you from 
Physics I:

Here’s what the variables represent:

 ✓ γ is the adiabatic constant, and it’s equivalent to C
p
/C

v
, the ratio of the 

specific heat capacity at constant pressure to the specific heat capacity 
at constant volume; for air, γ is 1.40.

 ✓ k is the Boltzman constant from thermodynamics (1.38 × 10–23 kg ∙ m2s–2K–1, 
or J/K).

 ✓ T is the temperature of the ideal gas according to the Kelvin scale.

 ✓ m is the mass of a single molecule in kilograms.

At-a-glance stats for the speed of sound
If you like impressing your friends by spouting 
random bits of knowledge, file away the follow-
ing values of the speed of sound:

 ✓ Air at 0°C: 331 m/s

 ✓ Air at 20°C: 343 m/s

 ✓ Oxygen at 0°C: 316 m/s

 ✓ Water at 20°C: 1,482 m/s

 ✓ Copper (temperature independent): 5,010 m/s

 ✓ Steel (temperature independent): 5,940 m/s
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Okay, time to put this equation to work! Go ahead and assume you have in your 
hands a camera whose rangefinder uses sound to find the distance to the sub-
ject. You’ve just taken a photograph of a fellow physicist, and being a physicist, 
your friend immediately wants to know the distance between the two of you. 
Checking your camera, you can see that the rangefinder sent a pulse of sound out 
that bounced off your friend and came back to the camera in 4.00 × 10–2 seconds. 
Your handy pocket thermometer tells you that the temperature of the air is 23°C. 
So just how far away is your friend, assuming you can treat air as an ideal gas?

First, you need to convert that temperature to kelvins by adding 273 to the 
Celsius temperature, which looks like this:

23°C + 273 K = 296 K

So the ideal temperature is 296 kelvins. Great. Now you can use the speed-of-
sound equation for gases:

Notice that in addition to the temperature, you also need the mass m of a 
single molecule of air in kilograms. You just happen to remember that the 
mass of air is 28.9 × 10–3 kg/mole (a mole is 22.4 liters of ideal gas). So the 
mass of one air molecule is the mass of a mole divided by the number of mol-
ecules in a mole (Avogadro’s number).

Bet you always wanted to know that! Right, moving on. For air, γ is 1.40, so 
this equation allows you to figure the speed of sound at 23°C:

Tada! The speed of sound where you are is 345 meters per second. You can 
relate the time the signal took and the speed of sound to the distance this way:

Distance = speed × time

So how much time did it take for the sound to speed from your camera to 
your friend? Well, the camera recorded 4.00 × 10–2 seconds, but don’t forget 
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that’s the time for a round trip (the sound leaving the camera and then return-
ing after bouncing off your friend). So the time sound takes to reach your 
friend is 4.00 × 10–2 seconds ÷ 2 = 2.00 × 10–2 seconds, which translates to

Distance = (345 m/s)(2.00 × 10–2 s) = 6.90 meters

And that’s that. Your friend was standing roughly 6.90 meters away from you 
when you took the photo.

Faster: The speed of sound in liquids
Sound travels faster in liquids than it does in gases. That’s because liquids 
are less elastic than gases, meaning they “bend” less under the same applied 
force. When you create a disturbance in a liquid, the force opposing that dis-
turbance is greater in a liquid than in a gas, which means the liquid “snaps 
back” into place quicker. The end result is that the disturbance is chased 
through the liquid faster than it is in a gas.

So what’s the expression for the speed of sound in liquids? That depends on 
two main aspects of the liquid:

 ✓ The resistance to deformation: The speed of sound is a measure of how 
fast the medium “snaps back” into place after a disturbance, and the 
measure of that is closely tied to the medium’s bulk modulus (the resis-
tance of a substance to being deformed by pressure). In fact, it’s tied to 
the adiabatic bulk modulus (adiabatic means no heat is exchanged with 
the environment), whose symbol is βad.

  The larger the adiabatic bulk modulus, the more resistance the liquid 
puts up against being deformed; so the higher the βad, the higher the 
speed of sound in that liquid.

 ✓ The density: The speed of sound in liquids is also tied to the liquid’s 
density (ρ). The higher the density of the liquid, the harder it is to get 
the liquid to move. Thus, the speed of sound is lower in dense liquids.

 Putting it all together, you get this for the speed of sound in a particular liquid:

where βad is the adiabatic bulk modulus and ρ is the liquid’s density.

Here’s your chance to practice calculating the speed of sound in a liquid! 
(Please contain your excitement.) Suppose you and your Physics II classmate 
take a trip to the seaside, and you want to document the trip with a photo of 
your friend. Unfortunately, she’s scuba diving, so you need to go underwater 
to take the photo. You set your camera to take underwater photos and take 
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the snapshot. Your friend sees you doing it and comes over, wanting to know 
how far apart the two of you were.

When you took the underwater photo of your pal, the camera said the sound 
signal came back in 4.00 × 10–3 seconds. Given that the adiabatic bulk modu-
lus of water is 2.31 × 109 pascals and the density of water is 1,025 kilograms 
per cubic meter, how far away was your friend?

Calculate the speed of sound in water with this equation:

So the speed of sound in water is about 1,500 meters per second. What does that 
info buy you? Well, you now know how long it took for the sound pulse from the 
camera to return to the camera, and you also know that distance = speed × time.

The camera recorded 4.00 × 10–3 seconds for a sound pulse to travel from the 
camera to your friend and back again, so the sound took 4.00 × 10–3 ÷ 2 = 2.00 × 
10–3 seconds to reach your friend. Plugging in the speed of sound and the time the 
sound pulse took, you discover that the distance between you and your pal was

Distance = (1,500 m/s)(2.00 × 10–3 s) = 3.00 m

Fastest: The speed of sound in solids
If the stiffer the medium is, the faster the speed of sound, then it shouldn’t 
surprise you that sound travels fastest in solids, which are even less elastic 
than liquids.

So what’s the expression for the speed of sound in solids? Here, you use a 
combination of

 ✓ Young’s modulus, a measure of the stiffness of uniform materials

 ✓ The density of the solid

 Here’s how Young’s modulus (Y) and density (ρ) relate to give you the speed 
of sound in a solid:
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This equation tells you that the higher Young’s modulus is — in other words, 
the stiffer the medium — the faster the speed of sound. The greater the den-
sity of the material, the slower the speed of sound (because the material is 
slower to react to a disturbance).

Imagine that you’re on an ocean cruise with your significant other. The two of 
you are standing on the deck, and because you both happen to be physicists, 
you naturally decide to measure the length of the deck, which is steel. Your 
significant other stands on the bow of the ship while you stand at the stern. 
Borrowing a handy fire axe from a fire control station on deck, you tap your 
end of the deck. Your significant other then reports that the sound took only 
2.00 × 10–2 seconds to travel through the deck.

Given that Young’s modulus for steel is Y = 2.0 × 1011 N/m2 and that the den-
sity of steel is ρ = 7,860 kg/m3, you can start determining the length of the 
deck by plugging numbers into the speed-of-sound expression for solids:

So the speed of sound in steel is about 5.0 × 103 meters per second — that’s 
5 kilometers per second, or about 11,000 miles per hour.

You can find the length of the steel deck by multiplying the speed of sound 
by the time it took the sound to travel, which gives you

Distance = (5.0 × 103 m/s)(2.00 × 10–2 s) = 100 m

There you have it: The deck is about 100 meters long.

The solid sounds of the railroad tracks
As a kid, I was able to verify that sound trav-
els faster in solids than through gases using 
railroad tracks that had those connector bars 
attached. By putting my ear to the track and 
watching a friend hit the tracks with a hammer 

some distance away, I could hear a definite 
clank-CLANK-clank coming through the tracks 
and then through the air. (Note: I don’t recom-
mend this as an experiment, especially if there 
are any trains lurking about.)
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Analyzing Sound Wave Behavior
This section considers some of the weird and wonderful things that sound 
waves can do. You see them bouncing and bending and find out what happens 
when two sound waves meet. This leads you to discover a new kind of wave — 
the standing wave, which doesn’t propagate; these are the kinds of waves 
that come from musical instruments. You see what happens when sources 
of sounds and listeners move. And finally, you break through the sound 
barrier to find out what happens when sound sources move faster than the 
speed of sound.

All the properties of sound that I discuss here are also properties of waves 
generally. So by understanding these aspects of sound behavior, you’re actu-
ally getting a lot more in the bargain. For example, grasping sound waves can 
take you a long way toward an understanding of light and optics in the next 
few chapters. These wave properties go right to the heart of lots of the work-
ings of the physical world.

Echoing back: Reflecting sound waves
Reflection occurs when a wave encounters a boundary. You’re familiar with 
the reflection of sound waves in the form of an echo.

In the case of a sound wave in air, the condensation of the air in a high-
pressure peak pushes against the air immediately next to it, which becomes 
condensed in turn, and so the wave spreads. However, if a high-pressure 
peak meets a solid surface such as a wall and tries to push against it, the 
wave doesn’t find the wall so forgiving. The high pressure pushes the wall, 
but the wall pushes back with a force of resistance. The high-pressure peak 
now sits against the wall and pushes against the air behind it, which, being 
more forgiving than the wall, allows the high-pressure peak to propagate 
back the way it came — and the wave is reflected. Physicists say that the wall 
provides a boundary condition on the wave.

Sound is a longitudinal wave, in which the air molecules oscillate in the 
direction of motion of the wave. As the wave approaches the wall, the wall 
restricts the motion of the air molecules. The molecules right next to the wall 
can’t oscillate at all. As the wave strikes, the molecules of the air near to the 
wall continue toward the wall until they effectively bounce off it — redirect-
ing their motion in the opposite direction — thereby reflecting the wave. In 
these terms, the boundary condition on the wave is that there must be zero 
oscillation at the wall.
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To illustrate this echoing process, I’ve graphed a pressure wave of sound as 
it reflects off a solid wall in Figure 7-5. For clarity, I haven’t reflected a whole 
wave. I’ve sent just a part of a wave — a pulse — as a speaker would generate 
if its diaphragm moved out and then back just once. In this figure, x measures 
the distance from the wall and p is the pressure fluctuation.

 

Figure 7-5: 
The reflec-

tion of a 
single pulse 
of pressure.
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Seeing with sound
As you probably know, a bat “sees” not with 
reflected light but with reflected sound. When 
a bat hunts, it uses echolocation; it makes click-
ing sounds that bounce back from any unfortu-
nate insects that may be flying by, and then it 
listens to the echo.

Bats had a head start, but as physicists came 
to understand the reflection of sound waves, 
people were able to use the same ideas for 
technologies like sonar and sonograms. These 
devices enabled people to see in a similar way, 
right down to the depths of the oceans and 
even inside the human body.
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With a different type of boundary may come different boundary conditions. 
For example, the wave may fall on a soft wall, which is deformable. In this 
case, you may see some oscillation immediately next to the wall, and the wall 
may absorb some of the wave’s energy as the molecules do work on the wall 
to move it. In that case, the reflected wave has a smaller amplitude, and the 
echo is quieter.

Sharing spaces: Sound wave interference
 Two waves can occupy the same place at the same time. When this happens, 

they’re said to interfere. The resulting oscillation is incredibly simple to work 
out: Just add the oscillation from one wave to the other. This idea is called the 
principle of superposition. So at any point, if one wave would cause a displace-
ment of the medium of y1 and the other wave would cause a displacement of 
y2, then the actual displacement of the medium at that point is simply y1 + y2.

To see the principle of superposition in action, check out Figure 7-6. It shows 
the wave displacements over time for two separate waves. In the same graph, 
I show what would happen if those two waves were traveling through the 
medium at the same time.

 

Figure 7-6: 
The interfer-
ence of two 

waves.
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Adding amplitudes: Constructive and destructive interference
Interference can be constructive or destructive. With constructive interference, 
the amplitudes of two waves combine to make a wave of larger amplitude. With 
destructive interference, the amplitudes of the waves cancel each other out.
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For instance, suppose you have a stereo with a pair of speakers like those in 
Figure 7-7. Now put on a CD that plays a pure tone — that is, each speaker 
makes the same sine-shaped sound wave (see the earlier section “Under 
pressure: Measuring the amplitude of sound waves” for details on why the 
graph takes this shape). This would be a very uninteresting piece of music to 
play, but it has some surprising effects.

 

Figure 7-7: 
Listening for 
constructive 

and 
destructive 

interference.
 a b

Say the speakers play a tone with frequency f, wavelength λ, and amplitude A. 
Now sit in a position equally distant from each speaker (point a in Figure 7-7). 
You receive two waves — one from each speaker. If you call the displacement 
you experience from the wave travelling from the left speaker y1, you can say 
that the displacement is given by the sine wave

y1 = A sin(2πft)

Because the other speaker is the same distance away, the displacement of 
the wave coming from it, y2, is just the same as y1, so y1 = y2. Now work out 
the wave that you experience, y

T
 , as you sit at point a. Use the principle of 

superposition and add the waves coming from each speaker:

y
T
 = y1 + y2 = A sin(2πft) + A sin(2πft) = 2A sin(2πft)

This is just a sine wave with twice the amplitude of the wave from each 
speaker. That’s not too surprising — if you sit at point a, you just hear a 
louder sound than you would if you had just one speaker instead of two. The 
two speakers are combining to make a larger-amplitude wave — this is con-
structive interference.

Now suppose you move — sit just to one side (at point b in Figure 7-7) so that 
you’re exactly half a wavelength closer to the right speaker than you are to 
the left one. This means that the wave from the right speaker reaches you 
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half a period earlier than the wave from the left speaker — that is, it’s shifted 
by T/2. So you can write y

2
 as

Now if you work out the combined wave from both speakers, you see

yT = y1 + y2 = y1+(–y1) = 0

You receive no sound wave at all — silence! The waves from each speaker 
are canceling each other at point b — this is destructive interference. You 
can read about constructive and destructive interference in light waves in 
Chapter 10.

Standing waves: Destructive interference at regular intervals
A standing wave is a kind of wave that doesn’t travel — the peaks simply 
oscillate at the same place without propagating. This kind of wave occurs 
when a propagating wave is confined, such as on a piece of string or, as you 
see in this section, when sound is contained in a tube. Here, I show you how 
to construct a setup to contain the sound, and you see how sound reflects 
inside the tube and interferes to produce a standing wave.

The setup: Getting identical waves going in opposite directions
Suppose you take a long tube that’s closed at one end and has a diaphragm at 
the other end (you stretch an elastic sheet over the end, for example). Place 
a speaker near the diaphragm. When you turn the speaker on, the sound 
waves cause the diaphragm to vibrate. The sound waves from the diaphragm 
travel down the tube (acting as the incident wave), reflect off the closed end, 
and travel back up the tube to the diaphragm again (the reflected wave).

But remember, the speaker does not produce a single pulse; instead, you 
have a sine wave of sound. So in this situation, you have two waves in the 
tube at the same time, one traveling away from the speaker and one travel-
ing toward it. Imagine that the reflection is ideal so that both waves have 
the same amplitude, frequency, and wavelength; their only difference is that 
they’re traveling in opposite directions.

Now look at the total wave. The wave from the diaphragm travels down the 
tube to the closed end, where the boundary condition is that there can be 
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no displacement of the molecules. The displacement of the reflected wave, 
at the closed end, is always the opposite of the displacement of the incident 
wave. So when the waves interfere, there’s no displacement (destructive 
interference) at all at the closed end, satisfying the boundary condition.

Because both waves are periodic, this destructive interference must happen 
at regular intervals along the tube. To see this, you move away from the wall 
by half a wavelength. Because both waves are sine waves, they both have the 
opposite displacement here that they had at the wall, so they’re still both 
equal and opposite — you have destructive interference again. In this way, 
at every point along the tube that’s a whole-number of half-wavelengths from 
the closed end, there’s destructive interference, so the molecules do not 
oscillate at all in these places. The total wave in this tube must be different 
from the sine wave you usually see for sound — you get the full picture of 
this strange new wave next.

Graphing a standing wave
Figure 7-8 shows a graph of incident and reflected sound waves at several dif-
ferent times. They’re two identical waves, with the only difference being that 
they’re travelling in opposite directions. The incident and reflected waves 
have amplitude A, and the horizontal axis measures distance from the wall.

 

Figure 7-8: 
Reflected 
and inci-

dent waves 
making a 
standing 

wave.
 

Incident wave

W
al

l

Superposition
Reflected wave

A

–A

A

–A

A

–A

13_538067-ch07.indd   14413_538067-ch07.indd   144 6/1/10   8:20 PM6/1/10   8:20 PM



145 Chapter 7: Now Hear This: The Word on Sound

The figure also shows the interference between these two waves, which is just 
the sum of the two graphs (according to the principle of superposition). You 
can see this wave at three different times. Notice that the wave doesn’t travel 
anywhere; this is a standing wave, and it just stays where it is. It oscillates, but 
the peaks and troughs do not propagate; they just move up and down.

The part of the wave that crosses the axis (where there’s no displacement) is 
called the node. Because the wave doesn’t propagate, its nodes don’t move. 
These nodes are just points of destructive interference.

Between the nodes are points in the wave that oscillate with the greatest 
amplitude — these are the antinodes. The amplitude of the standing wave 
at these antinodes is just equal to twice the amplitude of the incident and 
reflected waves. So you have a picture of the standing wave as a nonpropa-
gating oscillation, which has points of maximum and zero oscillation at inter-
vals of λ/2 along its length.

Harmonics: Putting the standing wave in normal mode
When the oscillation of a diaphragm coincides with the antinode (great-
est amplitude) of a standing wave, the standing wave is in a normal mode. 
Normal modes occur wherever there are standing waves, such as the ones on 
a vibrating string or in the pipes of an organ.

Suppose you have the closed-tube setup I describe earlier in “The setup: 
Getting identical waves going in opposite directions.” You set the speaker to 
make a pure tone with a wavelength that makes a standing wave in the tube, 
which has an antinode at the diaphragm. The oscillation of the diaphragm 
coincides with the antinode of the standing wave, so it’s in a normal mode.

 Standing waves are in a normal mode when the speaker makes a sound with 
wavelength λ

n
, which is given by

where L is the length of the tube and n is a whole number that labels the vari-
ous normal modes.

The frequencies of normal modes of vibration are called the harmonics. The 
first harmonic (n = 1) is called the fundamental frequency. Musicians often call 
the frequencies of the higher frequency modes overtones.

Note that n must be an odd number because there are an odd number of 
quarter-wavelengths from the barrier (the closed end of the tube) to an 
antinode. As n increases, so does the number of nodes and antinodes in your 
normal mode. So when your speaker makes a sound with wavelength 4L, 
there’s only one antinode, which is the one at the diaphragm.
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Figure 7-9 shows some normal modes of your tube — the two lines show the 
two positions of maximum displacement of the normal mode. Here, the hori-
zontal axis measures distance from the diaphragm, and you can see the posi-
tion of the closed end of the tube on the right side of the graph.

 

Figure 7-9: 
The first 

three nor-
mal modes 

in your 
sound tube.
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Now try a concrete example — what are the first few notes that your tube 
likes to play? Suppose your tube is 0.983 meters long. Then the wavelength of 
its normal modes are

If the speed of sound in your tube is 343 meters per second, then the frequen-
cies of these modes, f

n
, are

This means that the frequency of the lowest normal mode is 87.2 hertz.
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The next normal mode, when n = 3, has a frequency of 262 hertz, which is 
about middle C on a piano. Where would you have to place your ear in the 
tube in order to hear silence when you play middle C on your speaker? You’d 
just have to listen at a node, which happens every half-wavelength from the 
closed end of the tube. When n = 3, your wavelength, λ3, is given by

So you’d have to place your ear half this distance from the closed end of the 
tube — that is, 0.655 meters. For this normal mode, there are no other nodes 
in the tube (except, of course, the one at the closed end of the tube), so this 
is the only place you’d get silence.

 It turns out that any possible vibration of sound in the closed-tube-and-
diaphragm setup is simply an interference of normal modes! So even the cra-
ziest, most complicated, erratic vibration can be boiled down to a matter of 
how much of each normal mode you have. This understanding comes from 
some extremely powerful ideas in mathematics that have pervaded physics. 
For example, in quantum mechanics, particles (like the electron) are allowed 
to be only in certain particular states. These states are like the normal modes 
of your tube. Like your tube, the particles can be in a state that’s an interfer-
ence of these normal modes — but when you actually measure the state of the 
electron, say, you can only ever see it in one of the normal modes! This is just 
a hint of some of the quantum weirdness that lies ahead for you in physics.

Reaching resonance frequency: The highest amplitude
You can drive things at a frequency that maximizes the amplitude of vibra-
tion. For instance, consider the sound vibration in the speaker-and-tube 
setup, which is driven by the speaker. As you increase the frequency of 
the sound wave from the speaker, you find that the amplitude of the sound 
vibration peaks whenever the speaker drives at one of the harmonics — that 
is, one of the frequencies of the normal modes. So the tube has an infinite 
number of resonance frequencies, given by f

n
, where n is an odd number.

It’s testament to the power of the ideas in physics that resonance is also a 
feature of the RLC electrical circuit that you look at in Chapter 5. You see that 
in the RLC circuit, there’s likewise a natural frequency at which the current in 
the circuit oscillates with the greatest amplitude.

Getting beats from waves of slightly different frequencies
Anyone who has tuned a guitar has heard the effect of simultaneously playing 
two very slightly different notes — the sound seems to oscillate in loudness. 
These oscillations are called beats.

Figure 7-10a shows a graph of two waves of slightly different frequencies, and 
Figure 7-10b shows their sum, which is the wave of interference between the 
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two. You can see that the interfering wave oscillates with a frequency similar 
to the frequency of the original two waves, but the amplitude increases and 
decreases with another frequency, the beat frequency. The beat frequency is 
simply the difference between the frequencies of the original waves.

 

Figure 7-10: 
The beats 

formed from 
two waves 

with slightly 
different fre-

quencies.
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Bending rules: Sound wave diffraction
You can hear a police car approaching with its siren wailing even if it’s around 
a corner, hidden by tall buildings. And you can talk to a person in another 
room through an open door, even if you can’t see that person through the 
doorway. Sound waves travel in straight lines, but when they hit a boundary 
like the edge of a wall or a lamppost, the sound waves bend around it — this 
behavior is diffraction.

Diffraction happens in all waves, including sound. Figure 7-11 shows a sound 
wave approaching two gaps in a wall — the lines represent the position of 
the wave peaks. One gap is much wider than the wavelength of the sound, 
and the other is similar in size to the wavelength. You see that as the sound 
wave travels through the wider gap, it mostly goes straight through, with 
some bending at each edge. But when the sound goes through the gap that’s 
of similiar width to the wavelength of the sound, the wave spreads over a 
wider angle. This bending of the wave, to where it wouldn’t go if it traveled in 
a straight line, is diffraction.

The wider angle you get when a wave spreads by diffraction explains why 
you can hear around corners but you can’t see around them. Light has a 
much shorter wavelength than sound, so if you were to shine a light through 
the gaps in Figure 7-11, both gaps would be much wider than the wavelength 
of the light; therefore, you’d see hardly any spreading of the light wave — not 
enough for you to notice, anyway.
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Figure 7-11: 
Diffraction 
of a sound 

wave 
through a 

gap in a 
wall.

 

Direction of wave travel

 Diffraction is really just a manifestation of interference (as I show you in 
Chapter 10, on light). People use two different terms for essentially the same 
thing, but the difference is that interference is usually understood to mean 
the interaction of just a few waves, whereas diffraction is the interference of a 
very great number of waves.

Coming and going with the Doppler effect
The Doppler effect, named after Christian Doppler, says that a sound wave’s 
frequency changes if the source of the sound is moving (or you’re moving 
toward or away from the source). If you and the source of the sound are get-
ting closer, you hear the sound at a higher pitch. And if you and the source 
are getting farther apart, you hear the sound at a lower pitch.

For instance, consider a police car with its wailing siren. Because you’re law-
abiding, it passes right by you. What do you hear? You’re familiar with the 
high-pitched ne-naw-ne-naw as the car travels toward you, turning into a low-
pitched version of the same sound after it has passed and is traveling away. 
You can understand this effect using the picture of sound as a wave.

Moving toward the source of the sound
First consider what happens when the source of sound is stationary but 
you’re moving toward it. You can see this situation in Figure 7-12a. The 
source produces a wave with wavelength λ

s
 and frequency f

s
, and this wave 

travels with the speed of sound v. You walk toward the source with speed v
a
.
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Figure 7-12: 
The Doppler 

effect.
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If you were to remain stationary, your ear would experience a sound wave 
of frequency f

s
, which is the frequency of the source. But if you walk toward 

the source, then your ear experiences a sound wave with a higher frequency. 
You’re walking into the wave, so each wave peak has to travel a slightly 
smaller distance to reach you than it would if you were to remain still.

As you move toward the source of the sound, the speed of the wave as it 
appears to you is v + v

a
. So when a wave peak is at your ear, the time for the 

next wave peak to reach you is λ
s
/(v + v

a
) seconds. Therefore, the frequency 

you hear, f
a
, is given by

Because v = λ
s
f
s
, you can write this as

So you see that the frequency you hear is a factor of (1 + v
a
/v) greater than 

the frequency from the source.
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Having the source of the sound move
 When the source of a sound moves, the speed of the sound waves remains the 

same, because the speed of sound is determined only by the air — it has noth-
ing to do with the source. So if the source moves away from you with a speed 
v

b
,
 
as in Figure 7-12b, v is still the same. But what changes is the wavelength of 

the sound waves.

To see why the wavelength changes, think about how the waves propagate. 
Say the source emits a wave peak, which propagates behind the source. In 
the time before the next peak, the source moves a distance v

b
T

s
, where T

s
 

is the period of the source waves (T
s
 = 1/f

s
). So the wavelength behind the 

source is

The wavelength of the wave behind the source is now enlarged. Now plug 
this new wavelength into the equation relating the frequency that you hear to 
the frequency of the source (from the preceding section). Replace λ

s with the 
new enlarged wavelength to find

This is the frequency you hear when you travel toward a moving source of 
sound, which is in front of you. The source is moving in a particular direc-
tion with speed v

b
, and you’re behind it traveling in the same direction with 

speed v
a
.

If you’re in front of the source, then you’re in the region where the waves 
from the source have a shorter wavelength, and you’re walking away from 
the approaching peaks. The frequency you hear is given by

Doing the math on the Doppler effect
Now put some numbers into a police siren example. Suppose that the police 
car passes very close to you. It’s initially traveling pretty much straight toward 
you, and after it passes, it travels pretty much straight away from you.

A police siren makes a sound that has a frequency of about 320 hertz. If the 
car has its siren on, it must be in a hurry, so say it’s going at about 70 miles 
per hour (31.29 meters per second). Also, you’re walking along the sidewalk 
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at a speed of 1.5 meters per second. The actual frequency of the sound you 
hear is

This is about a 10 percent increase on the actual frequency of the siren. Now 
work out the frequency you hear when the police car has passed and is trav-
eling away:

This is about an 8 percent decrease on the actual frequency of the siren.

If you have a piano handy, you can play these sounds. The original police 
siren is roughly the same tone as the E, which is two whole notes above 
middle C. Then the sound that you hear as the car travels toward you is 
about the same as playing one note higher, and the sound when the car has 
passed is about the same as one note lower.

Breaking the sound barrier: Shock waves
Sound moves pretty quickly in air, but some things move faster than sound. 
When Concorde (the French and British supersonic passenger jet) was flying 
before its retirement in 2003, you could travel across the Atlantic Ocean at 
about twice the speed of sound. Meteors entering the Earth’s atmosphere 
travel through the air much faster than this. Objects breaking the sound 
barrier produce a sonic boom, a loud sound that people can hear from the 
ground. In this section, I discuss what happens when something breaks the 
sound barrier.

Producing shock waves
Because of the Doppler effect, the wavelength of the sound produced by a 
moving source is stretched behind it and shortened in front (see the earlier 
section “Coming and going with the Doppler effect” for details). When an 
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airplane (or another moving object) approaches the speed of sound, it has 
to work extra hard to compress the air in front of it as it bunches up all the 
wave peaks; this extra work gave rise to the term sound barrier.

Figure 7-13 shows the wave peaks of a source of sound moving faster than the 
speed of sound (that is, the source is in supersonic motion). The wave peaks 
spread uniformly away from where the source was when it emitted them. At 
any one time, this makes a series of circles whose centers are evenly spaced 
along the path of the source (assuming it’s moving at a constant speed), and 
the radii of the earliest circles are uniformly greater than the most recent 
ones. The edge of these circles forms a line of constructively interfering 
waves along their outer edge, which is called a shock wave.

The concentration of constructively interfering sound waves along the shock 
wave makes a very loud sound. Any listener who happens to be at a point on 
the shock wave hears this sound — the sonic boom.

Note that as the plane travels through the air, the shock wave is actually a 
cone; the figure shows only a cross section. As the plane travels faster than 
sound and produces a shock wave, the air around the tip of the plane is at a 
higher pressure than the surrounding air. The speed of sound can vary as the 
pressure of the air varies, which means that the pressure variation around 
the tip of the plane causes the shape of the shock wave to curve slightly in 
this region instead of the straight lines you see in Figure 7-13.

 

Figure 7-13: 
The shock 

wave of an 
airplane.

 

vat va

vt

a
α

Finding the angle of a shock wave
With basic trigonometry, you can easily work out a good approximation of 
the angle a shock wave makes from the direction of travel. Look at the right 
triangle in Figure 7-13. Since the source (an airplane) emitted a sound wave 
at point a, the source has been traveling for a time t at speed v

a
. So the length 
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of the hypotenuse of this triangle is v
a
t, and the length of the opposite side of 

the triangle is just the distance that the sound wave has traveled, vt. The sine 
of the angle of the shock wave, α, is then just the ratio

 You may hear that a jet travels at such-and-such a Mach number, such as 
Mach 3.3 (the SR 71 Blackbird) or Mach 9.6 (NASA’s X-43A). The Mach number 
is just the speed of the jet compared to the speed of sound, v

a
/v.

Check out an example — what would be the angle of the shock wave that 
Concorde would’ve made as it traveled across the Atlantic at twice the speed 
of sound? This means that the Mach number is 2.0; hence,

If you take the inverse sine of this, you find the angle is 30°.
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Chapter 8

Seeing the Light: When Electricity 
and Magnetism Combine

In This Chapter
▶ Recognizing light as electromagnetic waves

▶ Getting to know the electromagnetic spectrum

▶ Discovering and calculating the speed of light

▶ Understanding how light carries energy

Cracking the secret of light was a major advance for both scientists and 
the general population. Now physicists know what creates light waves. 

They can even predict how fast light waves go, how much energy they 
transfer from Point A to Point B, and more. Consider this chapter to be your 
guided tour of the nature of light. I’m your friendly guide (minus the name 
badge), and I start things off by covering what light really is. You then dive 
into topics such as the electromagnetic spectrum, light intensity, and more.

Let There Be Light! Generating and 
Receiving Electromagnetic Waves

The big name in the discovery of how light works is James Clerk Maxwell. 
He’s the lucky physicist who first figured out that light is nothing more than 
alternating electric and magnetic fields that regenerate each other as light 
travels, allowing it to keep going forever.

In this section, I explain how electricity and magnetism combine to create 
electromagnetic waves. I also note how radio receivers work by catching 
either the electric or the magnetic field of those waves.
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Creating an alternating electric field
The process of generating an alternating electric field (known as an E field) 
starts with an oscillating charge. To create an oscillating charge, you can con-
nect an alternating voltage source to the top and bottom of a wire. Figure 8-1 
shows this setup at four consecutive times. The alternating voltage source 
causes the electrons in the wire to race up and down its length, creating an 
alternating electric field in the wire.

 Electric fields propagate through space, so as the electric field you created 
goes up and down the wire, that same electric field moves out into space as 
well. Because the electric field in the wire is constantly changing directions as 
the voltage source alternates, you get an alternating electric field in the wire, 
which leads to an alternating electric field propagating through space, as you 
see in Figure 8-1.

 

Figure 8-1: 
Creating an 
alternating 

E field.
 

(a)

(b)

(c)

(d)

At first, the electric field starts off small (see Figure 8-1a). Consequently, the 
electric field that leaves the wire and propagates through space is also small. 
In time, however, the electric field in the wire becomes larger (Figure 8-1b), 
and the propagated electric field does the same.
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Then, as the voltage source alternates, the electric field begins to switch 
directions in the wire. The propagated electric field follows, growing smaller 
even though it’s still pointing in the same direction. At some later time, 
the voltage across the wire changes polarity completely (the polarity of 
the potential difference between two points just describes which point is 
of higher potential and which is lower) — and the electric field in the wire 
changes polarity, too, as you can see in Figure 8-1c. Not surprisingly, the 
direction of the electric field that’s propagated into space also changes. 

As you can see in Figure 8-1d, as the oscillating charge completes its alternat-
ing cycle, the wave in the electric field completes its cycle, too.

Note how the oscillating electric field in Figure 8-1 always points in a direction 
that’s perpendicular to the direction of propagation. The wave propagates to 
the right, with the electric field always in the vertical orientation — that is, 
it oscillates up and down. When the electric field oscillates with a constant 
orientation as the wave propagates, the wave is linearly polarized. So you can 
say that the wave propagating in Figure 8-1 is linearly polarized with the elec-
tric field in the vertical orientation. (Why not bring it up at your next party?)

Getting an alternating magnetic 
field to match
How exactly do you pair an alternating electric (E) field (see the preceding 
section) with the magnetic (B) field that’s supposed to be the other half of a 
light wave? Are you supposed to have a spinning bar magnet or something?

Actually, creating the matching B field is easier than it seems. In fact, if you have 
a straight wire where the voltage (and hence the current) alternates up and 
down, you’ve already done it, because current in wires creates a magnetic field.

 Here’s how applying an alternating voltage across a wire creates your match-
ing E and B fields:

 ✓ When you have voltage alternating up and down a wire, you create an 
oscillating E field.

 ✓ That E field causes current to race up and down in the wire, and the cur-
rent generates an alternating B field.

Notice the direction of the created B field in Figure 8-2. The created E field is 
parallel to the wire (following the electrons as they race madly up and down 
the wire), but the B field is perpendicular to the E field. That’s because the B 
field is created perpendicular to the wire.
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Figure 8-2: 
Generating 
an alternat-

ing B field.
 

B
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(a)

I

(b)

I(c) I(d)

Putting all this together means that an alternating voltage source applied 
across a wire creates an alternating E field and an alternating B field, both 
of which propagate away from the wire, as Figure 8-3a shows. Note that the 
E and B fields are perpendicular to each other. And both of them, the E field 
and the B field, are perpendicular to the direction of propagation — you have 
all three dimensions covered.

 When you know the directions of the E and B fields, just follow one of the 
right-hand rules to find the direction of propagation:

 ✓ If you put the fingers of your right hand in the direction of the E field and 
then bend them toward the B field using the shortest possible arc, then 
your thumb will point in the direction of propagation.

 ✓ Hold out your palm, pointing your fingers in the direction of the electric 
field and your thumb in the direction of the magnetic field. Then the 
direction of propagation of the wave is the direction your palm is facing. 
Figure 8-3b shows this version.

 Electromagnetic waves are just propagating fluctuations of the electric and 
magnetic fields. Electromagnetic waves of the lowest frequencies — like the 
ones from a wire connected to an alternating voltage source — are radio 
waves. A higher range of frequency of electromagnetic waves is even more 
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familiar: light. That’s right — light and radio are essentially the same thing; the 
only difference is that your eyes are sensitive to the frequencies of visible light 
waves.

 

Figure 8-3: 
An electro-

magnetic 
wave and a 

right-hand 
rule for 

the wave’s 
E field, B 
field, and 

direction of 
propagation.

 

Direction of
propagation

Direction of
propagation
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E

E

B

B
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The wire in my example, believe it or not, is actually an antenna. Perhaps 
you’ve seen radio towers that soar up to great heights. At their core, they 
rely on a single wire with an alternating voltage placed across that wire from 
top to bottom. The wire, by having charges race up and down its length, cre-
ates radio waves.

 Can you generate visible light with a wire in the same way that you can generate 
radio waves? Probably not. No alternating voltage source in the world oscillates 
fast enough to approach the frequencies of visible light. For the scoop on visible 
light and other parts of the electromagnetic spectrum, check out the later sec-
tion “Looking at Rainbows: Understanding the Electromagnetic Spectrum.”

Receiving radio waves
Creating radio waves (see the preceding sections) is only half the story; you 
still need a way of receiving them. That’s where receiving antennas come in.

As I show you in Figure 8-3, the electric and magnetic fields of a radio wave 
are perpendicular to each other — there, the E field moves vertically and the 
B field moves horizontally. Vertical antennas and loop antennas are the two 
primary ways of receiving radio waves, and they correspond to the E and B 
field parts of radio waves, respectively.
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Vertical antennas: Catching the E field
To detect a vertically moving electric field from a sending antenna, you 
simply use a vertical receiving antenna, which is really just a long wire.

The electric field (E field) from the sending antenna is in the vertical plane, 
just like the antenna itself, because the E field follows the movement of the 
electrons in the wire (see the earlier section “Creating an alternating electric 
field”). When you use a vertical receiving antenna, the E-field component 
of the radio wave makes the electrons in the receiving antenna race up and 
down. When the antenna receives the E field, a tiny voltage appears from the 
top to the bottom of the receiving antenna. Your radio can then amplify that 
voltage until it becomes a signal that lets you make out words and music.

Loop antennas: Catching the B field
To receive a horizontally moving magnetic field (B field) from a sending 
antenna, you can use a wire loop or coil. (Note: Receiving radio antennas 
use a combination of both loops and coils.) First, set up the loop or coil in 
the vertical plane to maximize the magnetic flux through it (I cover magnetic 
flux in detail in Chapter 5). If that sounds counterintuitive to you, consider 
this: The magnetic field you’re trying to detect is in the horizontal plane, so 
setting up a loop or coil of wire vertically allows you to make as much of that 
magnetic field as possible go through your antenna.

So the rapidly oscillating B field is oscillating in your loop or coil of wire. 
That’s great, but how do you actually measure that B field? A changing mag-
netic flux in a loop or coil of wire induces a current in that loop or coil in a 
way that counteracts the applied magnetic field from the radio station. Your 
radio is able to measure that tiny current and decipher it, just as other radios 
can decipher the tiny voltages created by the radio station’s electric field.

Making radio waves a hit
Physicist Heinrich Hertz was the one who first 
generated and received radio waves in his 
laboratory in 1886. This was a breakthrough for 
physics, but he wasn’t sure how to put these 
waves into use.

Guglielmo Marconi, an Italian physicist, was one 
of many people who set out to use these new 
waves to communicate over great distances 
almost instantaneously. He patented a version of 
the telegraph that marked one of the first practi-
cal advances in “wireless” communication.

Early in radio’s development, radio waves were 
detected over distances of about a mile. But 
physicists soon noted that the more charge 
racing up and down the antenna, the greater the 
amplitude of the wave and therefore the greater 
the distance from which it could be received. 
As transmitters and receivers advanced in 
technology, the distance increased to hundreds 
and then thousands of miles.
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 With a loop antenna, your radio decodes the current that flows through the 
loop due to the fluctuating magnetic flux. With a straight antenna, your radio 
decodes the tiny voltages that appear across the wire from the electric field 
component of the wave.

Looking at Rainbows: Understanding 
the Electromagnetic Spectrum

Electromagnetic waves have the same general properties shared by all 
waves — wavelength, frequency, and speed (see Chapter 6 for details). In this 
section, you see how those properties apply to light waves. You also find out 
how the continuous range of frequencies is divided up into different wave 
types within the electromagnetic spectrum.

Perusing the electromagnetic spectrum
Even though all electromagnetic waves are essentially the same — differing 
only in frequency — they differ in how they interact with matter. For exam-
ple, the waves with a particular range of frequencies are visible as light, 
whereas other waves at a higher frequency are invisible but can give you a 
nasty sunburn. You see this variation because matter is made up of charged 
particles (electrons and protons) in various configurations, and the way that 
these particles interact with electromagnetic waves depends on the details of 
this configuration.

Different frequencies of electromagnetic waves correspond to different parts 
of the electromagnetic spectrum — that is, the range of all electromagnetic 
waves, arranged in increasing frequency. Most divisions of the spectrum 
are made according to how the different parts of the spectrum interact with 
matter, but the division is sometimes based on how the wave is produced 
or used.

People sometimes debate which wavelengths go in which category, but 
Figure 8-4 can give you approximate ranges of the main divisions of the 
electromagnetic spectrum, with labels for the names of the electromagnetic 
waves within them.
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Figure 8-4: 
The elec-

tromagnetic 
spectrum.
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Starting at the lower frequencies, here are the types of electromagnetic 
waves in order:

 ✓ Radio waves: As you can see in Figure 8-4, radio waves include the famil-
iar AM and FM bands. The radio band’s AM frequencies are in the 106 
hertz (Hz) region, and the FM frequencies are in the 108 Hz region. Radio 
waves have long wavelengths and are generally produced with antennas 
(see the earlier section “Let There Be Light! Generating and Receiving 
Electromagnetic Waves” for details).

 ✓ Microwaves: When the frequency of radio waves increases to the point 
where the wavelength is about the same size of the electrical circuits 
used to make them, the wave can have a feedback effect on the circuit. 
The methods of generating waves of this frequency have to take this into 
account, so these waves have a special name: microwaves. Some liquids 
consist of molecules that absorb microwaves and become heated, which 
microwave ovens take advantage of.

 ✓ Infrared light: This kind of light is invisible to the naked eye. Humans 
have to wear night-vision goggles to pick up this part of the spectrum.

 ✓ Visible light: The light you can see is actually a very narrow band of the 
spectrum that exists solely in the 4.0 × 1014 Hz to 7.9 × 1014 Hz region 
(this is one of the few frequency ranges pretty much everyone agrees 
on). The lowest-frequency end of this part of the spectrum corresponds 
to the red end of the rainbow, and the highest-frequency end corre-
sponds to the violet part of the rainbow. The rest of the rainbow is dis-
tributed within this range.

  Why is visible light restricted to such a narrow range? One answer is 
that much of the rest of the light spectrum is absorbed by water and 
water vapor — both of which are plentiful on Earth. Infrared light, for 
example, is absorbed by water vapor, making it an unfavorable option to 
rely on for your vision.

 ✓ Ultraviolet light: Higher in the spectrum still, you have ultraviolet light, 
where the frequency is higher and the wavelength is shorter. This is the 
region of the so-called black lights that make phosphorescent paints 
glow. These are also the waves responsible for sunburn.
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 ✓ X-rays: This part of the light spectrum travels easily through the human 
body, which is why X-rays play such a starring role in medicine to check 
for broken bones.

 ✓ Gamma rays: These high-energy rays are created by high-power tran-
sitions in the atomic nucleus (as opposed to other kinds of electro-
magnetic waves, which mostly come from transitions in the electron 
structure of an atom).

Relating the frequency 
and wavelength of light
Because light is made up of electromagnetic waves, it must obey the general 
wave equations (see Chapter 6). In particular, you can relate the frequency 
(f) of a wave to its wavelength (λ) to find its speed (v) like this:

v = f λ

In a vacuum, light travels at the speed c, which is about equal to 3.0 × 108 
m/s (I explain where this number comes from in the next section). So for a 
vacuum (or air), you can say the following:

c = f λ

So using this formula, what’s the wavelength of red light if its frequency is 
4.0 × 1014 Hz? And at the other end of the visible spectrum, what’s the wave-
length of violet light (whose frequency is 7.9 × 1014 Hz)? You know that c = f λ, 
so the wavelength formula is

Plugging in the numbers and doing the math for the red-light question gives 
you this:

Now take a look at the calculations for violet light, where the frequency is 
7.9 × 1014 Hz:
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The nanometer (abbreviated nm), or 10–9 m, is often used for wavelengths in 
the visible region. So you can say the two wavelengths are 750 nanometers 
and 380 nanometers. What do these numbers actually mean? Turns out that’s 
up to your eye.

 Red light is the longest wavelength your eye can perceive, and 750 nanome-
ters is the longest of the red wavelengths most eyes can see. Violet is the 
shortest wavelength of light you can see, and 380 nanometers is the shortest 
of the violet wavelengths your eye can normally pick up. So in between 380 
and 750 nanometers — a very short range — lie all the glorious colors of the 
light spectrum that are visible to the human eye.

See Ya Later, Alligator: Finding 
the Top Speed of Light

Light is fast — nothing can travel faster, Star Trek and Star Wars gadgetry 
included, unfortunately. The speed of light in a vacuum is approximately 
3.0 × 108 meters per second, or 3.0 × 1010 centimeters per second, or about 
186,000 miles per second. (If you’re a stickler for accuracy, try the value 
299,792,458 meters per second.)

 The distance around the world is about 40,000 kilometers, or 4.0 × 107 meters, 
so at the speed of light, you could make 7.5 trips around the world in 1 second 
(3.0 × 108 m/s ÷ 4.0 × 107 m = 7.5 trips/second). You could even go to the moon 
in that amount of time. So although light is fast, it’s not infinite.

A not-so-illuminating light experiment
There was a time, of course, when people had 
no idea how fast light was. Many experiments 
were tried, and many failed (utterly). Case in 
point: In a touching show of confidence, two 
scientists synchronized their pocket watches 
to within a second and then trooped to oppo-
site ends of a mile-long field. At just the agreed-
upon moment, the first scientist opened a lantern. 
The problem was that from the second scientist’s 
point of view, as soon as his watch showed the 
correct time, the beam of light from the first 

scientist was already shining full force. Neither 
scientist could believe anything could be so fast; 
each one thought his watch must’ve been off!

Of course, given the speed of human reflexes, 
the two scientists could’ve been standing 
100,000 miles apart, and the beam of light 
would’ve arrived within less than a second — 
that is, less than the accuracy of the watches 
and the scientists’ ability to open their respec-
tive lanterns.
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In this section, you discover how physicists figured out how fast light travels 
in a vacuum. Of course, as with other waves, the speed of light depends on 
the medium it’s traveling through, if any. I touch on light as it travels through 
materials such as diamond and glass in Chapter 9.

Checking out the first speed-of-light 
experiment that actually worked
Many people attempted to measure the speed of light, often relying on astro-
nomical phenomena. Armand Fizeau and Léon Foucault were the first to 
make Earth-bound measurements of the speed of light. Foucault’s method 
used a rotating mirror to improve upon the space-based estimates.

Albert Michelson, an American who adapted and improved upon Foucault’s 
method, measured the speed of light in 1926 — and dramatically increased 
the accuracy of the measurements.

Setting up the experiment
Michelson’s apparatus was pretty clever; it involved bouncing light off a 
mirror 35 kilometers away. However, because light makes the 70-kilometer 
round trip in about a ten-thousandth of a second, Michelson needed to do 
more than just bounce light off a mirror some distance away.

His solution made him famous, and you can see a depiction of it in Figure 8-5. To 
accurately capture the speed of light, Michelson determined that in addition to 
bouncing off a mirror 35 kilometers away, light had to hit a rotating, eight-sided 
mirror just right. Specifically, the light needed to bounce off one side of the eight-
sided mirror, make a round trip of 70 kilometers, and then hit another part of 
the eight-sided mirror just right to get into the detector. If the mirror rotated too 
much or too little, the side that the light signal was meant to bounce off of into 
the detector just wouldn’t be there (in other words, it wouldn’t have reached 
its proper position yet). Because Michelson could regulate how fast the mirror 
rotated, which was pretty darn fast, he was able to make the window for light to 
hit the eight-sided mirror very small. Pretty clever, eh?

In the 1926 round of experiments, Michelson determined the speed of light 
to be 299,796 kilometers per second, plus or minus 4 kilometers per second. 
(However, 3.0 × 108 meters per second is sufficiently accurate for the calcula-
tions in this book.)

Finding the mirror speed
Try calculating how quickly Michelson’s mirror must’ve been rotating to 
capture the speed of light. Say you’re working with the setup in Figure 8-5 
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and want to reflect a light beam off a mirror 35 kilometers away (that’s a 
round trip of 70 kilometers). The key to calculating the speed of the mirror’s 
rotations is to realize that the shortest time the experiment can measure is 
the amount of time it takes for the eight-sided mirror to make one-eighth of 
a revolution. That’s the shortest time the light can take to bounce off the far 
mirror, return, and still enter the detector.

 

Figure 8-5: 
Measuring 
the speed 

of light.
 35 km

Light
detector

Light
source

Mirror
Rotating
eight-sided
mirror

So in the time it takes light to go 70 kilometers, your eight-sided mirror makes 
one-eighth of a revolution. How fast does the eight-sided mirror turn? First, figure 
out the amount of time light needs to go 70 kilometers. You already know that

So this equation must also be true:

To travel 35 kilometers to the mirror and 35 kilometers back at the speed of 
light, you need this much time:

14_538067-ch08.indd   16614_538067-ch08.indd   166 6/1/10   10:13 PM6/1/10   10:13 PM



167 Chapter 8: Seeing the Light: When Electricity and Magnetism Combine

That means your eight-sided mirror must make one-eighth of a turn in 2.3 × 
10–4 seconds, giving it an angular speed of

So your eight-sided mirror needs to be turning at 540 revolutions per second 
in order to accurately measure the speed of light.

Calculating the speed 
of light theoretically
As James Clark Maxwell discovered, the astonishing fact is that absolutely 
every property of electric and magnetic fields — every aspect of their behav-
ior — is contained in just four equations. Most of the math goes beyond trig, 
so you can skip the actual equations for now, but here’s a preview of what 
they cover (see Chapters 4 and 5 for more on electric and magnetic fields):

 ✓ Faraday’s law describes the electric field that comes from a changing 
magnetic field.

 ✓ Ampère’s law describes the magnetic field that results from a current 
and a changing electric field.

 ✓ A third equation simply expresses the fact that there are no magnetic 
monopoles, so magnetic field lines are all loops.

 ✓ Gauss’s law describes the flux of the electric field in terms of the electric 
charge. (For uniform fields, the electric flux of a field through an area is 
simply the size of the area multiplied by the size of the component of 
the field that’s perpendicular to the area.)

Maxwell summarized and organized all the laws of electricity and magnetism 
because he was trying to solve a great puzzle. Before Maxwell came along, 
electric charge was thought to be divided — there was one form of charge for 
static electric fields and another for magnetic fields. But it turned out that if 
one of these units of charge was divided by the other, then the answer was 
equal to the speed of light! This was thought to be an incredible coincidence. 
But Maxwell resolved the puzzle purely by thinking about it and what was 
known about electricity and magnetism, and in doing so, he revealed the true 
nature of light.

Maxwell brought together the equations governing electric and magnetic 
fields and showed that one of their solutions was to have a wave. The real 
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thunderbolt came when Maxwell showed that these waves must travel at the 
speed of light. It then didn’t take long to realize that this was no coincidence — 
the waves were light!

I’m not embarrassed to admit it — I think the theoretical calculation of the 
speed of light is one of the most spectacular results physics has ever had. 
And it’s right on. As you know, light is made up of electromagnetic waves. 
To start calculating the speed of light with that information, you first need to 
examine the values typically involved with both electric and magnetic fields. 
The size of the force between two charges, for example, is this:

That’s actually the modern shorthand version of the following equation:

where , which equals 8.85 × 10–12 C2/(N-m2), is a constant called the electric 
permittivity of free space, a measure of how easily an electric field passes 
through free space. (Sounds promising for finding the speed of light, doesn’t it?)

Similarly, magnetic fields often involve the constant μo, the so-called mag-
netic permeability of free space (again, sounds like something you’d want to 
include in a calculation of the speed of light through free space). So the force 
between two current-carrying wires is

And μ0 = 4π × 10–7 T-m/A.

So how do μ0 and  connect to the speed of light? Well, Maxwell derived 
some famous equations describing how light works, and here’s the payoff: He 
was actually able to derive the speed of light like this:

No, your eyes aren’t deceiving you. Maxwell was indeed able to calculate the 
speed of light by simply connecting it to the two fundamental constants of 
electric and magnetic fields. This relation is exact, as determined by the laws 
of electric and magnetic fields. Now if that doesn’t get you excited, I don’t 
know what will!
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You’ve Got the Power: Determining 
the Energy Density of Light

Like water waves (which I touch on in Chapter 6), electromagnetic waves can 
carry energy. If they didn’t, everyone would be in trouble, because energy 
from the sun would never reach Earth, meaning there wouldn’t be any solar 
power, oil, plant life, or warmth. Not a pretty picture, huh?

To get an idea of how much energy an electromagnetic wave carries, you 
have to look at the wave’s energy density, the amount of energy that wave car-
ries per cubic meter. The units for an electromagnetic wave’s energy density 
are joules per cubic meter.

Why not just find total energy? Well, when you’re talking about a light source 
like the sun, you don’t just switch it on and off, so you can’t really think about 
it in terms of total energy. This section explains how you find energy density.

Finding instantaneous energy
Light waves are electromagnetic waves, so you can reasonably assume that 
the energy in a light wave comes from its electric and magnetic components. 
In an electromagnetic wave, you have an electric field and a magnetic field, 
which are changing with time (see the earlier section “Let There Be Light! 

Light plus friction equals hot soup
Microwave ovens provide an excellent example of 
how electromagnetic waves can transfer energy. 
Here, I use the detailed picture of the physics of 
the electromagnetic wave to heat a bowl of soup.

Although water molecules have no charge 
overall, each molecule has a positive end and a 
negative end because the electrons in the mol-
ecule aren’t evenly distributed. Therefore, you 
say that the water molecule is an electric dipole.

When you place the polar water molecule in 
an electromagnetic wave, the molecule tries 

to align itself with the alternating electric 
field. This causes the molecule to rotate back 
and fourth as the electric field oscillates. The 
motion causes the water molecule to push and 
pull on neighboring molecules, causing them to 
move and vibrate — and this greater vibration 
of the molecules is exactly what it means for 
something to be at a higher temperature. The 
frequency of the waves in a microwave oven 
transfers energy to water molecules at a rate 
that’s good for cooking: 2.45 × 109 Hz.
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Generating and Receiving Electromagnetic Waves” for details). The energy in 
these fields is spread through the space that they occupy.

In this section, I show you how to work out the density of the energy stored 
in these fields at any point and any time. This gives you the foundation to 
figure out how much power is in an electromagnetic wave, as you see later in 
“Averaging light’s energy density.” When you know that, you can figure out 
things like how much energy Earth’s equator receives from the sun.

Looking at electric energy density
Obviously, you need energy to set up an electric field in space. For example, 
to charge a capacitor (see Chapter 4), which stores energy, you have to do 
work to put the charges on each plate. After you’ve charged it, the work you 
did isn’t lost — it’s stored in the electric field between the plates. Because 
this field is uniform, the energy stored in it is uniformly distributed through-
out the space between the two plates.

If you work out how much work you did to charge the capacitor and then 
divide it by the volume of the space between the plates, you have an expres-
sion for the energy density of the electric field. It turns out to be the following:

where E is the magnitude (strength) of the electric field and  is a constant 
equal to 8.85 × 10–12 C2/(N-m2).

Actually, that’s the amount of energy density you need to set up an electric 
field from any source — a parallel plate capacitor or light waves. Wherever 
the electric field has magnitude E, the energy density at that point is given by 
the preceding equation. So now you know one component of the total energy 
density in an electromagnetic wave: the energy density of an electric field.

Considering magnetic energy density
You can make a uniform magnetic field in a solenoid by setting up a current 
in the loops of wire (see Chapter 4). Setting up the current takes work, and 
this work is stored in the magnetic field inside the solenoid.

You can work out how much work you did to set up the uniform magnetic 
field and divide it by the volume of the space that it occupies to find the den-
sity of the energy stored in this field. The answer turns out to be the following:
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where B is the magnitude (strength) of the magnetic field and μ0 is a constant 
equal to 4π × 10–7 T-m/A.

Guess what — that’s exactly how much energy density (energy per cubic 
meter) you need to set up a magnetic field from any source, whether that’s 
wires in a solenoid or an electromagnetic wave. So at any point, where the 
magnetic field strength is B, the density of the energy stored in the magnetic 
field there is given by the preceding relation.

Adding the energy densities together
Because light is made up of an electric field component and a magnetic field 
component, the total energy density of an electromagnetic wave is simply the 
sum of the two energy densities. The equation for total energy density (u) 
looks like this:

That’s the total energy density, u, of an electromagnetic field (electric and 
magnetic fields together) per cubic meter. You can use this expression to 
work out the energy density at every point and time of the fluctuating fields 
of an electromagnetic wave.

Now you’re making progress! So consider this question: How does nature 
decide which component of an electromagnetic wave to put more energy 
into — the electric component or the magnetic component? Turns out both 
components have equal energy. That is, the electric energy component is equal 
to the magnetic energy component, which means you can say the following:

That’s interesting, because using that equation, along with the formula for 
the speed of light (from the earlier section “Calculating the speed of light 
theoretically”), you can do some pretty slick algebra. First, isolate E on one 
side of the equation:
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Now, because the speed of light in a vacuum is , you can just 
plug c into the equation:

So the magnitude of the electric component in a light wave is connected to 
the magnitude of the magnetic component by a factor of c. Well, because 

 and , you finally get the following equation for the 

energy density:

Or equivalently,

Nice work! You’ve found the energy density at every point of an electromag-
netic wave in terms of the strength of the electric and magnetic fields there.

Averaging light’s energy density
Light’s energy density depends only on electric and magnetic fields, as I show 
you in the preceding section. In an electromagnetic wave, these fields fluctuate.

Assume that the fields are fluctuating in the shape of a sine wave. The fre-
quency of the fluctuations in a light wave is something like hundreds of 
thousands of billions of times per second (1014 hertz) — too fast to measure. 
So instead, physicists calculate the average energy density in the space occu-
pied by an electromagnetic wave.

To get the average energy density, you work with the root-mean-square (rms) 
of the electric and magnetic fields (the maximum field divided by the square 
root of 2). The root-mean-square electric field is given in terms of the ampli-
tude of the fluctuation of the sine-shaped electric field, E

0
, by the following 

equation:
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And for the magnetic field, it’s given by

where B
0
 is the amplitude of the sine-shaped magnetic field fluctuation. So 

the average energy density (uavg) in a space occupied by an electromagnetic 

wave is  and .

Here’s a fun problem for you: The sun’s light rays arrive with a root-mean-square 
E field of roughly 720 newtons per coulomb. What’s their energy density?

Use the  equation and plug in the numbers to get

uavg = (8.85 × 10–12 C2/N-m2)(720 N/C)2 ≈ 4.6 × 10–6 J/m3

Looks like the time-average energy density of the sun’s light rays at the Earth 
is 4.6 × 10–6 joules/meter3.

Okay, now imagine a plane area, A. Suppose you want to know how much 
energy falls on this area every second when the electromagnetic wave is 
traveling straight down onto it. In a time, t, the wave will travel a distance of 
ct (speed times time). So all the energy that is in the volume Act will strike the 
plane area. You can use the average energy density formula to work out this 
energy:

So the energy falling per unit area per unit time, I, is given by

The power in a wave per unit area is the intensity (as I show you in Chapter 7). 
So I in the preceding formula is the intensity of an electromagnetic wave. This 
is just the electromagnetic equivalent of the sound intensity that you see in 
Chapter 7.

Using this formula, you can find the intensity of the sun’s light here on Earth,

I = (3.00× 108 m/s)(8.85 × 10–12 C2/N-m2)(720 N/C)2 = 1,380 J/s-m2
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This means that every square meter of the surface of the Earth receives 1,380 
joules of energy every second from the sun. (Note however, that the pre-
ceding equation only applies if the wave strikes straight down on the area, 
so this really applies only near the equator. Nearer the poles, you’d have 
to include a factor to account for the surface’s tilting away from the sun at 
greater latitudes — obviously the North Pole doesn’t receive as much energy 
per unit area from the sun as a Caribbean island!)
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Chapter 9

Bending and Focusing Light: 
Refraction and Lenses

In This Chapter
▶ Bending light as it enters new materials

▶ Refracting light enough to get internal reflection

▶ Drawing ray diagrams for converging and diverging lenses

▶ Using equations relating distances and magnification

▶ Using lenses in combination

Here’s a cool quality of light: It interacts with matter so that it bends. 
Instead of just passing through the universe oblivious to everything 

else, light is affected by the matter through which is passes, whether that 
matter is dense like a diamond or thin as air.

Why does light bend? It bends because light is made up of electromagnetic 
waves — that is, tiny electric and magnetic fields — and they actually inter-
act with the tiny electric and magnetic fields you find in matter (coming from 
charged particles, such as electrons and protons, and their motion).

This chapter first introduces a different way of representing light waves: the 
ray. Then it begins a discussion of the tricks that light can play as it bends 
in glass, water, and other such media. You start by getting a handle on the 
index of refraction, which is all about just how much light bends in any given 
material. You also see lenses bring images into focus, or even total internal 
reflection when light can’t make it out of a block of glass like a prism.

Wave Hello to Rays: Drawing 
Light Waves More Simply

When you’re exploring the various paths that light waves take as they bounce 
off and bend through various reflective or transparent materials, you’re more 
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interested in the places that the waves go, their directions and deflections, 
than the details of the wave fluctuations of electric and magnetic fields. So for 
simplicity, you can forget about electric and magnetic fields in most of this 
chapter and deal with rays of light (I point out when you need to take note of 
light’s wavy nature). A ray just tells you the wave’s direction of travel without 
showing the wavelength or speed or frequency or the positions of the wave 
peaks — the kinds of things I cover in Chapter 8.

Rays are not a new thing — you probably already think of light as rays 
anyway. They’re just a simpler way to refer to the light wave. You can see 
what I mean by rays in terms of the light-wave picture in Figure 9-1. Here’s 
how to interpret this figure:

 ✓ The dotted lines represent the light waves by showing the positions of 
the wave peaks of the electric field.

 ✓ Solid lines are some of the rays that represent the same wave. You can 
see that these are just lines that are always at right angles to the wave 
peaks — so they always lie in the direction of travel of the waves. The 
arrows on the rays show this direction.

In Figure 9-1a, the light waves come from a single point (that is, you have a 
point source), and they’re spreading out in all directions. Because this light is 
traveling in all directions from the central point, any line drawn radially out-
ward from this point is a ray.

Figure 9-1b shows another example of rays representing waves. This time you 
have a plane light ray traveling to the right. I’ve drawn three of the rays that 
represent this wave.

 

Figure 9-1: 
Rays and 

waves.
 (a)

Wave peaks

Rays

(b)
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 When working with light rays, just remember two basic principles:

 ✓ Rays travel in straight lines. When they meet a surface, they may reflect 
or deflect, but while they’re traveling through the same medium without 
boundaries, rays travel in straight lines.

 ✓ Rays are reversible. When a light ray travels between two points (say, 
A to B) along a path, then the light from B to A follows the same path in 
the opposite direction.

Slowing Light Down: The 
Index of Refraction

As soon as you get past the concept that light consists of alternating E and B 
fields that regenerate each other, that there’s a maximum speed at which light 
can travel (which you can calculate theoretically), and a few other items (see 
Chapter 8), light traveling in a straight line through a vacuum forever isn’t 
all that interesting. Sure, you could spend some time studying the situation, 
but when you have it pretty well scoped out, you kind of wish something else 
would happen.

But when light hits and starts traveling through something else, then light 
becomes interesting again. When light in a vacuum enters any material and 
begins to travel through that material instead, the light slows down, because 
the electric and magnetic fields around the light in the material act as a drag. 
For example, when light impacts a block of transparent material (this is all 
theoretical, so make it a 60-pound block of diamond), the light slows down 
and bends.

In this section, you look at how much that material slows light down and see 
how much the light bends as a result. I also show you that not all light bends 
equally, because the index of refraction varies depending on the wavelength 
of the light.

Figuring out the slowdown
Light reaches its maximum speed, c, in a vacuum. That’s about 3.0 × 108 
meters per second, and it’s all downhill from there, because whenever light 
travels through anything else — even air — it slows down.
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 The ratio of the speed of light in a vacuum, c, to the speed of light in a mate-
rial, v, is a constant for any given material, and that ratio is called the index of 
refraction, n. Here’s the definition of the index of refraction:

The index of refraction is just a pure number, because it’s the ratio of speeds, 
so it has no units, like relatively few other quantities in physics.

 Generally speaking, the denser the material, the more electric and magnetic 
fields it has to slow light down. So diamond, for example, has a higher index 
of refraction than air. Table 9-1 gives a starter list of indexes of refraction for 
various materials. The table also includes temperature, which can affect the 
density of the material and therefore its index of refraction.

 A material usually contracts as its temperatures decreases, so it becomes 
denser and its index of refraction can rise. However, water is a special case. 
Ice (at 0°C) has a refractive index of 1.32, and water has the higher value of 
1.33. When the water freezes, the molecules form ice crystals, which happen 
to have a structure that’s less dense than the original water. That’s why ice 
floats on water.

Table 9-1 Indexes of Refraction for Various Materials

Material Temperature (°C) Index of Refraction (n)

Diamond 20°C 2.42

Window glass 20°C 1.52

Benzene (liquid) 20°C 1.50

Water 20°C 1.33

Ice 0°C 1.32

Air 20°C 1.00029

Oxygen 20°C 1.00027

Hydrogen 20°C 1.00014

So if diamond has a refractive index of 2.42 at 20°C, what’s the speed of light 
in a diamond? Well, it’s

So light travels at only 1.2 × 108 meters per second in diamond. Positively pokey.
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Calculating the bending: Snell’s law
When light slows, it bends. You can put the index of refraction to work with 
Snell’s law, which tells you exactly how much light bends when it enters a 
new medium. (See the preceding section for info on the index of refraction.)

 The incident (incoming) light comes in at an angle of θ1, measured with respect to 
a line perpendicular to the material’s surface — that perpendicular line is called a 
normal (see Figure 9-2). And when the light bends and travels off into the medium, 
it goes at a new angle with respect to the normal, θ2. Here’s how the angles relate:

n1 sin θ1 = n2 sin θ2

where n1 is the index of refraction of the medium the light is coming from (it 
doesn’t need to be vacuum to have Snell’s law work) and n2 is the index of 
refraction of the medium the light enters (which could be diamond, or glass, 
or even vacuum).

Note that if you know the incident angle and the indexes of refraction of the 
materials involved, you can solve for the angle at which light heads off into 
the new medium like this:

That’s a nice result — it tells you what angle you can expect light to go 
speeding off at in a new medium.

 

Figure 9-2: 
Snell’s law.
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 Here’s one thing that Snell’s law tells you that’s not immediately obvious: If 
you’re going from less-dense to denser material, light is bent toward the 
normal; if you’re going from denser to less-dense material, light is bent away 
from the normal.

For instance, if you look at Figure 9-2, you see the light ray traveling from less-
dense to denser material, and the light bends toward the normal. Now if you 
remember that light rays are reversible, you can imagine the same ray going 
in the opposite direction (from the denser to the less-dense material) — then 
the ray bends away from the normal.

Now try some numbers. Say that light goes from air (which you can treat as 
vacuum for the purposes of this example) to your 60-pound diamond block. 
And say that light hits the diamond at 65° with respect to the normal. What’s 
the angle the light bends to inside the diamond?

That is, you have n1 = 1.00, n2 = 2.42, and θ1 = 65°, and you need to find θ 2. You 
can use Snell’s law like this:

So the light comes in at 65° and ends up at 22°.

Rainbows: Separating wavelengths
Here’s something that you may not like to hear because it complicates things 
a bit: The index of refraction of materials varies slightly depending on the 
wavelength of the light. On the other hand, you probably like the results of 
this fact: rainbows. Because the colors in sunlight (which contains all colors) 
bend different amounts in water droplets, you get a separation of colors into 
that familiar display of rainbows.

The index of refraction does vary by light wavelength but not strongly (so 
physicists often ignore it). Table 9-2 lists some values for the various colors 
of light and what the corresponding indexes of refraction are in glass.

Table 9-2 Indexes of Refraction According to Wavelength

Color Wavelength (nanometers) Index of Refraction in Glass

Red 660 1.520

Orange 610 1.522

Yellow 580 1.523
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Color Wavelength (nanometers) Index of Refraction in Glass

Green 550 1.526

Blue 470 1.531

Violet 410 1.536

Say that light is incident at 45° to a sheet of glass. How much does red light 
(λ = 660 nm) bend, compared to violet light (λ = 410 nm)?

Snell’s law tells you that n1 sin θ1 = n2 sin θ2, so

The light is first traveling through the air, so n1 = 1.00. For red light in glass, 
the index of refraction is 1.520, so you get

For violet light, the index of refraction in glass is 1.536, so you get

So as you can see, you get different amounts of bending depending on the 
color of light. Note that the angle calculated is with respect to the normal, so 
violet light is bent slightly more than red light here.

Because of the differing indexes of refraction for different wavelengths, light 
splits in a prism (see Figure 9-3). Here’s how it works: when light enters the 
prism, it’s going from air into a medium with a higher index of refraction — 
typically glass — so it bends in the glass toward the normal (a line perpen-
dicular to the surface). Because the index of refraction is stronger for shorter 
wavelengths, red light (with a longer wavelength) bends less than violet light 
(with a shorter wavelength). When the light emerges from the prism, it bends 
away from the normal, and how much it bends depends on the index of 
refraction — so red light is further separated from violet light.

In actual rainbows, the light not only refracts when it enters the water drop-
let but also reflects inside the water droplet. You can read more about this 
phenomenon in the sidebar “Reflecting on rainbows,” later in this chapter.
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Figure 9-3: 
A prism 
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Bending Light to Get Internal Reflection
When light enters a material with a lower index of refraction, that light bends 
away from the normal (an imaginary line perpendicular to the material’s 
surface). If the incident light comes in at a large enough angle, the light may 
bend away so much that it doesn’t refract at all — it gets reflected instead.

In this section, I discuss two cases in which you get reflection. In the first, all 
the incident light is reflected. In the second, only polarized light — light with 
aligned electric and magnetic fields — is reflected, and the rest of the light is 
refracted as it enters the less-dense material.

Right back at you: Total 
internal reflection
Sometimes light doesn’t make it out of a material, and it ends up bouncing 
around inside. Perhaps you’ve noticed that when you turn a glass paper-
weight, one of the internal edges sometimes looks like a mirror, reflecting 
with a silvery appearance. That’s total internal reflection.

To see how this works, take a look at Figure 9-4. Light is going from a dense 
medium such as glass to air. That means that the light bends away from the 
normal when it gets into the air, as you see in ray 1. If you keep increasing θ1, 
ultimately, θ2 reaches 90° — that is, the light just skims along the glass surface, 
as in ray 2. If you increase θ1 any more, the light will be reflected back into the 
glass, as you see in ray 3. This is what’s known as total internal reflection. When 
light goes from a dense medium to a less-dense medium, it bends away from 
the normal, and if the incident angle becomes large enough, the light will be 
reflected back into the denser medium where the two materials meet.
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Figure 9-4: 
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 Total internal reflection happens when the angle at which the light tries to 
exit the dense medium, θ2, becomes so large that it reaches 90°. Right at that 
point, when the light ends up skimming the glass/air interface, you have total 
internal reflection. The incident angle at which this happens is called the criti-
cal angle — θc. At the critical angle, light ends up with an exit angle of 90° with 
respect to the normal. In other words, when θ1 = θc, θ2 = 90°.

What value does θc have? You can use Snell’s law to find out:

n1 sin θ1 = n2 sin θ2 

Plugging in the values, you get

 Because sin 90° = 1, you have the following for the critical angle for total inter-
nal reflection:

Note that this equation requires that n2 < n1 (otherwise you can’t have total 
internal reflection).
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For example, say you have a diamond ring and that light is bouncing around 
inside the gem. What’s the critical angle beyond which light already inside the 
diamond gets totally internally reflected back into the diamond? You can use the 
equation for total internal reflection. The index of refraction of air is near 1.00, 
and the index of refraction for diamonds is 2.42, so you have the following:

So if light hits the diamond-air interface at an angle of more than 24.4°, it’ll 
bounce back into the diamond, and that facet of the diamond acts like a 
mirror — that’s one of the reasons properly cut diamonds seem to exhibit so 
much fire.

Polarized light: Getting a partial reflection
Here’s a peculiar fact about light — when it bounces off a nonmetallic sur-
face, it gets polarized. That means that the light rays’ electric fields are lined 
up and its magnetic fields are lined up.

 When you talk about polarization, you normally discuss the direction of the elec-
tric (E) field in the light ray. The E field oscillates in a direction that’s perpendic-
ular to the light ray’s direction of travel, and the plane that the light ray and the 
E vector form is called its polarization. So if you have a light ray coming toward 
you and its E vector is oscillating horizontally, the light is polarized horizontally.

Reflecting on rainbows
Rainbows form when water droplets are in the 
air. Creating rainbows is a matter of varying 
indexes of refraction. Red light, for instance, 
bends less when it enters the water droplet, 
and violet light bends more.

Specifically, sunlight enters the droplet, and 
all the colors of the rainbow begin to separate 
immediately. In this case, violet bends more 
than red. Then, given the angle of incidence 
when the split light tries to leave the droplet, 
total internal reflection occurs. The light ends 
up leaving the front of the droplet — and violet 
is bent more than red again, as this figure 

shows. The result — all the colors of the rain-
bow. Physics does it again!

RedSunlight

Violet
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With normal light, the E vector can oscillate in any direction perpendicular to 
the direction of travel. But when you bounce light off a nonmetallic surface, 
the reflected light ends up being polarized to some extent in the plane of the 
surface. For example, if light bounces off a pool of water, the reflected light 
ends up being chiefly polarized in the horizontal direction.

In Figure 9-5, you see the incident ray coming in from the left. A number of 
arrows in all directions (perpendicular to the direction of travel, of course) 
represent the unpolarized electric-field component of this ray. The reflected 
ray on the right is totally polarized, so it has electric field oscillations only 
in the horizontal direction. The refracted ray is partially polarized, because 
the reflected wave preferentially carried away electric field oscillations in the 
horizontal direction, leaving the refracted wave with relatively few. You can 
see this in Figure 9-5 — in the refracted ray, the arrows representing the hori-
zontal electric field oscillations are diminished compared to the others.

 

Figure 9-5: 
The light 

reflect-
ing off the 
surface is 
polarized.

 

Angle of
incidence

Reflected ray
(polarized in the

horizontal direction)

Refracted ray
(partially polarized)

Incident ray
(unpolarized) θ1 θ1

θ2

Reflecting polarized light at Brewster’s angle
 When light bounces off a nonmetallic surface, the amount of polarization 

depends on the angle of incidence (with respect to the normal, an imagi-
nary line perpendicular to the surface). And at an angle of incidence called 
Brewster’s angle, θB, the polarization is total. So when light reflects off a pool 
of water at Brewster’s angle, the reflected light is completely polarized in the 
horizontal direction. Here’s the formula for Brewster’s angle:
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where n1 and n2 are the indexes of refraction. So what is Brewster’s angle for 
water? Well, the index of refraction for water is about 1.33 and the index of 
refraction for air is about 1.00, so you have the following:

So Brewster’s angle for water is 53°.

Noting the angle between the reflected and the refracted rays
You can prove that the refracted ray, which enters the water, is at 90° with 
respect to the reflected ray if the incident light enters the water at Brewster’s 
angle (the angle at which polarization is total). To prove this, start with 
Snell’s law:

n1 sin θ1 = n2 sin θ2

where θ1 and θ2 are shown in Figure 9-5. You can write this as the following, 
using Brewster’s angle, θB, for θ1:

Using Brewster’s equation, you know that

You have tan θB = sin θB/cos θB, which follows from the trig definition of the 
tangent, so do the following calculations:

And because sin θ = cos(90° – θ), you can say that 

cos θB = cos(90° – θ2)

 θB = 90° – θ2

So Brewster’s angle is 90° from the refracted angle. Cool.
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Getting Visual: Creating 
Images with Lenses

Many weird and wonderful things happen to light when it hits curved sur-
faces, so in this section, you step into a world of images. You find out what 
the field of optics considers to be an object and how images are made by 
the curved surfaces of lenses. This is the physics that led to telescopes and 
microscopes, which opened up new doors of perception of the universe.

Here, I demonstrate how you work out where and how big an image will be 
simply by drawing a few lines. Such ray drawings can give you a good mental 
picture of what lenses do to the light that passes through them. After this, I 
show you a couple of equations, which tell you exactly where the images are 
and how big they are, without your having to take out your ruler and pencil.

Defining objects and images
As far as the field of optics is concerned, an object is simply a source of light 
rays. It doesn’t have to glow with light; it can just reflect light from another 
source. The important point is that light rays should radiate away from the 
object. For example, this book would be considered an object in physics. The 
book isn’t generating the light, only reflecting it from your lamp or the sun or 
whatever the light source is where you’re reading.

For simplicity, this book considers only very simple objects like point sources, 
which are simply points that radiate rays, or line sources. A line source is 
simply a line that radiates rays in all directions from every part of it — physi-
cists draw these as arrows, because sometimes you find them upside down, 
and the arrowhead emphasizes direction.

Cutting the glare with Polaroid sunglasses
Polaroid sunglasses take advantage of the fact 
that light is polarized when it bounces off flat 
surfaces. These sunglasses are created with 
thousands of elongated crystals that are applied 
to a film, which is then stretched. Stretching the 
film aligns the crystals, which then permit only 

light of a certain polarization — parallel to the 
crystals — through. That’s why people some-
times wear Polaroid sunglasses when fishing: 
The sunglasses filter out the light bouncing off 
the water, which would otherwise be glaring. A 
nice effect, isn’t it?
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So much for objects — now what about the images that are made from them? 
Well, the simplest example of an image is one you probably see every day — 
your own image in the mirror. In this case, you’re the object (no offense!), and 
the mirror reflects the rays coming from you and makes an image behind the 
mirror. The image is the point from which the rays leaving your face seem to 
be coming from. You know that you — the object — are not behind the mirror, 
but your image appears behind. This kind of image is called a virtual image. 

Another example of an image is the one projected in a cinema. Each frame of 
the movie is turned into an image, which is projected onto the screen. This is 
a different type of image from the one you see in the mirror, because the rays 
don’t just appear to be coming from the image — they actually converge onto 
the image. That is, the rays make the picture all come together on the movie 
screen. Because this type of image can be made to fall on a screen, it’s called 
a real image.

Now it’s coming into focus: 
Concave and convex lenses
You can find lenses everywhere — in standard digital cameras, in TV cam-
eras, perched on the end of peoples’ noses, in flashlights, even sometimes 
in peoples’ watches when the really tiny date has to be magnified. A lens is 
simply a transparent object (usually a disk of glass), that takes an object and 
makes an image. It can do this because it has two curved surfaces.

 Here are two types of lenses:

 ✓ Convex (converging): A convex lens curves so that it bulges in the 
middle (see Figure 9-6). When you put a point object in front of this lens, 
some of the rays that radiate away travel through the lens. When they 
meet the first surface, they refract, or bend, and when they leave the 
lens, they refract some more. The effect of the convex lens in Figure 9-6a 
is to gather all these rays together back to a point — this is your image. 
Because all the rays converge there, it’s a real image.

  If a number of parallel rays strike the lens, then they all converge on 
a point called the focal point, as you see in Figure 9-6b. You may have 
already discovered the focal point for yourself if you’ve ever tried to 
focus sunlight into a single bright spot with a magnifying glass. The sun 
is so far away that the rays coming from it are pretty much parallel, so 
when they pass through your magnifying glass, they converge at the 
focal point. If you place a piece of paper there, then all the converging 
rays can make the paper burn.
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 ✓ Concave (diverging): A concave lens is narrower in the middle. This 
time, when the rays from the object strike the lens, they diverge. All the 
rays appear to diverge from a certain point, and this is the virtual image. 
See Figure 9-7a.

  Now if you send a bunch of parallel rays into a concave lens, they all 
diverge, but they all appear to be diverging from the focal point (see 
Figure 9-7b).

 The way I remember the difference between convex lenses and concave lenses 
is that a diverging lens forms a sort of a cave (because its middle is all hol-
lowed out), as in concave.

The distance between the lens and the focal point is called the focal length, f. 
The strength of a lens is measured solely by this length — if it’s shorter, then 
the rays are bent through a larger angle, and the lens is stronger. 

 In many lenses, one of the lens’s surfaces may curve more than the other. 
Even in those cases, there’s still only one focal length, so the focal point on 
each side of the lens is at the same distance, f. Also, however the sides are 
curved, if the lens is thicker in the middle than at the edges, it’s convex; 
otherwise, it’s concave.

 

Figure 9-6: 
Light 

passing 
through a 

convex lens.
 

Object

Image

Focal point

Focal length, f

(a)

(b)
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Figure 9-7: 
Light 

passing 
through a 
concave 

lens.
 

(a)

(b)

Object

Image

Focal point

Focal length, f

Another special point for a lens is the center of curvature, which is a distance, 
C, from the lens. The distance between this point and the lens is called the 
radius of curvature.

 The radius of curvature is not related in a simple way to the amount of cur-
vature of the lenses; instead, just think of it in terms of the focal length of the 
lens. The radius of curvature is simply twice the focal length, C = 2f.

The dotted line in Figures 9-6 and 9-7 is called the optical axis of the lens. It’s just 
the line that passes through the lens at its widest part (or thinnest part if the lens 
is concave) and that’s normal (perpendicular) to the surface of the lens there.

Drawing ray diagrams
You can draw three special lines to find the image that a lens makes, based 
on where the object is. These lines tell you where the image appears, 
whether it’s upside down or right-side-up, whether it’s larger or smaller than 
the original object, and whether the image is real (made of converging light 
rays) or virtual. In this section, you discover how to draw ray diagrams for 
both convex (converging) and concave (diverging) lenses.
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The object I use in each section is a line object, which looks like an arrow. 
The arrowhead makes sure you always know whether the image is upside 
down or the right way up. You can think of this type of object as just being 
a lot of point objects all in a line. (For more on objects and point and line 
sources, see the earlier section “Defining objects and images.”)

X marks the spot: Finding images from convex lenses
 The position and size of the image depend on the position and size of the 

object. For a convex (converging) lens, here’s how to draw three special lines 
that help you figure out the position and size of the image (see Figure 9-8):

 ✓ Ray 1: One ray leaves the object, travels toward the center of the lens, 
and travels straight through without being deflected at all.

 ✓ Ray 2: Another ray travels from the object, parallel to the axis of the 
lens, and is deflected so that it passes through the lens’s focal point.

 ✓ Ray 3: A third ray travels from the object and passes through the focal 
point on the near side before reaching the lens. The lens deflects this 
ray so that it then travels parallel to the axis of the lens.

The image is located where these three lines cross.

 You can draw these ray lines for any point on your object and find every point of 
the image, but for simplicity, most people draw only the lines from the tip of the 
object (the point of the arrow). And although I draw three rays in Figure 9-8, you 
really need only two rays to locate the image. Three is better for safety — as a 
check on the other two — but if you know what you’re doing and are under time 
pressure (such as when you’re taking a test), two is enough.

 

Figure 9-8: 
Drawing 

three spe-
cial rays for 

a convex 
lens.

 

Object F

F

Real image

2

1

3

If you go through the line-drawing process for convex lenses, you encounter 
three special cases for what the image looks like. Here are these cases, which 
are all based on the position of the object (if you need more info on the focus 
and radius of curvature, see the earlier section “Now it’s coming into focus: 
Concave and convex lenses”):
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 ✓ The object is beyond the radius of curvature, C: If the object is this far 
out, the image is real, upside down, and smaller than the object (see 
Figure 9-9a).

 ✓ The object is between the radius of curvature, C, and the focal length, 
f: Here the image is still real and upside down, but now it’s larger than 
the object (see Figure 9-9b).

  When the object is at the center of curvature, then its image is the same 
size as the object, and the closer the object gets to the focal point with-
out crossing, the larger the image becomes.

 ✓ The object is closer to the lens than the focal length, f: This is an inter-
esting case, because for the first time, you don’t get a real image (see 
Figure 9-9c). You can’t even draw the third ray, because it doesn’t go 
through the lens. There’s no place in space that the three rays come 
together, no place that you can bring an actual physical screen and get 
an in-focus image — the image is virtual. It’s also larger than the object 
and right-side-up.

 

Figure 9-9: 
Ray 

diagrams for 
three spe-
cial cases 
of images 

from a 
convex lens.
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 Recognize the situation in which the object is between the focal point and the 
lens? That’s the case where a converging lens forms an upright image that’s 
larger than the object you’re looking at, on the same side of the lens as the 
object itself (the image is virtual, so no light rays actually come together to 
form the image, but looking through the lens bends the rays so that they 
appear to be coming from the image). That’s a magnifying glass — and the fact 
that you don’t get an enlarged upright image until the object is between the 
focal point and the lens shows why you have to hold the lens up close to what-
ever you’re trying to magnify. Cool, eh? Sherlock Holmes would be proud.

Going virtual with concave lenses
With a concave (diverging) lens, light bends away from the horizontal after 
passing through the lens. You can see a diverging lens in Figure 9-10.

So when you have a diverging lens, can you work with ray diagrams to find 
the image? Absolutely — but this time you use only two rays:

 ✓ Ray 1: This ray goes from the tip of the object and through the center of 
the lens. Figure 9-10 shows that this ray goes through the center of the 
lens and isn’t deflected at all. Easy.

 ✓ Ray 2: This ray goes horizontally from the tip of the object to the lens, 
parallel to the axis of the lens; then the ray deflects away from the axis 
along a line that passes through the nearest focal point — that is, the 
ray travels as though it came from the nearest focal point. Figure 9-10 
shows that the second ray bends away from the horizontal on the other 
side of the lens.

 

Figure 9-10: 
A concave 

lens pro-
duces a 
smaller, 
upright 
virtual 
image.

 

Object Virtual image
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So if the second ray is bent away from the horizontal, where does it intersect 
the first ray? The answer is that they don’t intersect on the side of the lens 
that the observer (who is looking through the lens) is on. Instead, you extend 
the rays back through the lens until they intersect. Because you’re extending 
these rays in a straight line back to somewhere they don’t actually exist, the 
image is virtual. In other words, the image forms on the same side of the lens 
as the object, as you see in Figure 9-10.
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 Regardless of where the object is, the virtual image from a concave lens is 
always right-side-up, and it’s no farther from the lens than the focal length. 
The image is also upright and smaller than the object.

Getting Numeric: Finding Distances 
and Magnification

With a few lens equations, you can find out where images appear and how 
big they are. Drawing ray diagrams (as I show you in a preceding section) is 
a good way to get a strong picture of what lenses do, but when you have that 
in mind, you’ll find these equations a much quicker way of finding out what 
your lenses are doing.

There’s really nothing mystical about the equations in this section — they 
just come from the laws of refraction (which you can examine in “Slowing 
Light Down: The Index of Refraction,” earlier in this chapter). People derived 
these equations by applying the law of refraction to the curved surfaces of 
the lenses, but you don’t have to bother doing that — here, I just show you 
how the equations work.

Going the distance with 
the thin-lens equation 

 Using the thin-lens equation, you can relate the distance an object is from a lens, 
the distance from the lens to the image, and the lens’s focal length. The equation 
is called the thin-lens equation because it’s actually an approximation, and that 
approximation really holds only for “thin” lenses — that is, lenses whose bend-
ing power isn’t too great (stronger lenses have a shorter focal length, so strong 
lenses have to be more curved and therefore thicker). This section gives you the 
equation, shows you how it works, and provides a couple of example calculations.

Introducing the thin-lens equation
 Here’s the thin-lens equation:

This equation relates the distance the object is from the lens (do) and the dis-
tance the image is from the lens (di) with the focal length, f.
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The signs of do, di, and f are important. For instance, you give converging lenses 
a positive focal length f, but diverging lenses get a negative focal length (that’s 
because the image forms on the other side of the lens from the observer). And 
if you get a negative distance for the image distance, di, that means the image is 
virtual (which, for a lens, means that the image forms on the same side as the 
object). 

 The best way to state the rules for the signs of do, di, and f in the thin-lens equa-
tion is in terms of the incoming and outgoing sides of the lens (see Figure 9-11). 
When light from an object travels through a lens, I call the side that the light 
enters the incoming side; the side of the lens through which the light leaves is 
the outgoing side. Then the rules are simple to state:

 ✓ Object distance, d
o
: When the object is on the incoming side of the lens, 

then the distance from the object to the lens is positive (in this book, 
this is always the case).

 ✓ Image distance, d
i
: When the image is on the outgoing side of the lens, 

then the image distance is positive; otherwise, it’s negative.

 ✓ Focal length, f: When the lens is convex, its focal length is positive; 
otherwise, it’s negative.

Note: This book always pictures the object to the left of the lens, so the 
incoming side is on the left in the figures (including Figure 9-11). But these 
rules still apply in exactly the same way if this situation is reversed, because 
then the incoming and outgoing sides would also reverse.

 

Figure 9-11: 
Sign rules 
for object 

and image 
distances.

 

Incoming side:
Objects here have positive do
Images here have negative di

Outgoing side:
Objects here have negative do
Images here have positive di
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Doing calculations with the thin-lens equation
Now try some numbers with the thin-lens equation. Say that you have a camera 
with a converging lens that has a focal length of 5.0 centimeters, and the flower 
you’re taking a picture of is 2.00 meters in front of the lens. How far on the other 
side of the lens does the image form? You can put the thin-lens equation to work 
right away:

Rearranging this gives you

Combining the fractions and solving for di gives you

So plugging in the numbers gives you the following:

So the image forms at 5.1 centimeters behind the lens of the camera (on the 
side opposite to the flower).

Now try one with a diverging lens. Say you have a diverging lens with a focal 
length of –5.0 centimeters (See? I told you diverging lenses get negative focal 
lengths), and you place an object 7.0 cm in front of it. Where does the image 
appear to form?

You can use the thin-lens equation like this:

And I’ve already solved for di this way:
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Plugging in the numbers gives you the answer:

So the image forms at –2.9 centimeters — that is, between the focal length 
and the lens. Note that this result is negative. That means that the image is 
visible only by looking through the lens — not on the same side of the lens 
as the observer. In other words, it’s a virtual image, as you’d expect from the 
type of lens and the placement of the object (to see why, check out the ray 
diagram in Figure 9-10).

Sizing up the magnification equation
The thin-lens equation tells you where an image will form, but it doesn’t tell 
you very much about the image itself. Sometimes, you want to know whether 
that image is bigger or smaller than the object and whether it’s upright or 
upside down with respect to the object. That’s where the magnification 
equation comes in.

Finding the magnification equation
Say that hi is the height of the image and ho is the height of the object. You can 
see that the magnification of the image compared to the object would be m, 
like this:

Figure 9-12 shows two of the rays that go to make the image of an object from a 
convex lens. The figure shows the size of the object and the image, along with 
the distances of the object and image from the lens. The ray that travels straight 
through the lens makes an angle θ with the axis. By using geometry and similar 
triangles (shaded gray in Figure 9-12), you can show that the magnification is 
equal to the ratio of the image distance to the object distance like this:

Note that a negative value for the magnifications means the image is upside 
down with respect to the object, and positive magnification (the kind magni-
fying glasses and most optical telescopes produce) means that the image is 
right-side-up compared to the object.
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Figure 9-12: 
The magnifi-

cation of a 
convex lens.
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 Why does the magnification equation have a minus sign in it? That’s because 
the magnification of a magnifying glass — that is, a converging lens — is con-
sidered positive when the image is virtual, because you look through the lens 
to see the image and it’s right-side-up. But because the image is virtual, the 
distance to the image from the lens, di, is negative. The minus sign in the mag-
nification equation corrects that — so even though the image comes out vir-
tual (which means negative in the thin-lens equation), it’s still upright (which 
by convention means positive in the magnification equation).

Plugging in some numbers
Now you can figure out the distance from a lens to an image using the thin-lens 
equation, and because you already know the distance from the object to the 
lens, you can use the magnification equation to figure out the magnification.

Try some numbers. Start by taking a look at the converging-lens problem 
from the earlier section “Going the distance with the thin-lens equation”: The 
camera has a converging lens that has a focal length of 5.0 centimeters, and the 
object you’re taking a picture of is 2.0 meters in front of the lens. In this prob-
lem, the distance from the lens to the image turns out to be 5.1 centimeters.

What’s the magnification of the converging lens in this setup? You can use 
the magnification equation:

Plugging in the numbers gives you the answer:

So the magnification is –2.6 × 10–2. That tells you a few things. First, note that 
magnification is another of those relatively few quantities in physics that has 
no units — it’s just a multiplier. Second, the negative sign tells you that the 
image formed is upside down with respect to the object (did you know that 
camera images are inverted?). And third, it tells you that the magnification 
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is very small, so you can capture big objects on small film surfaces or pixel 
arrays (of digital cameras).

Now take a look at the diverging lens. In the second problem I solve in “Going 
the distance with the thin-lens equation,” the focal length is –5.0 centimeters, 
and the object is placed 7.0 centimeters in front of it. The image forms at –2.9 
centimeters. So what’s the magnification of the lens with this setup? You can 
use the magnification equation:

Plugging in the numbers here gives you this:

So although the image is upright, it’s still smaller than the object (putting it 
closer to the lens will result in magnification greater than 1).

Combining Lenses for More 
Magnification Power

You can use lenses together — in fact, that’s one of their most popular uses, 
in microscopes and telescopes and such. Lenses used in combination are 
almost always converging lenses. In this section, you look at how combining 
two lenses gives you more magnification power, and you see how such com-
binations usually work.

Understanding how microscopes 
and telescopes work
When you combine two converging lenses, the first lens is nearest the object, so 
it’s called the objective lens. As you can see in Figure 9-13, the object is farther 
away from the objective lens than the focal length (fo) of the objective lens. In a 
microscope, the object you’re looking at may not be much beyond the focal length, 
but in a telescope, the object is always much farther from the objective lens.

As you can see in the figure, rays from the tip of the object form an image 
past the focal length of the objective lens on the right side of the lens. This 
image is larger than the object, and it’s inverted — it’s also a real image.
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Seeing clearly with corrective lenses
Two common vision problems are nearsight-
edness, where people can focus only on near 
objects, and farsightedness, where people can 
focus only on objects farther away. Corrective 
lenses help with both — diverging lenses for 
nearsightedness and converging lenses for far-
sightedness.

The diagram at the top of the following figure 
shows an uncorrected nearsighted eye. The 

problem here is that the lens of the eye tends 
to focus objects some distance in front of the 
retina. As a result, objects look blurry. The bottom 
diagram shows the same eye corrected with a 
diverging lens. Now the diverging lens makes the 
rays from objects diverge slightly to counteract 
the overly strong converging powers of the lens 
of the eye. As a result, the image comes into 
focus directly on the retina, as it should.

 

Figure 9-13: 
The 

objective 
lens.
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The diagram at the top of the next figure shows 
an uncorrected farsighted eye. Here, the prob-
lem is that the lens of the eye doesn’t converge 
light passing through it enough. As a result, the 
image forms past the retina. The solution is to 

use a converging lens, as in the bottom diagram. 
The converging lens makes the light rays from 
the object converge a little, which helps the lens 
of the eye focus the image, which appears on 
the retina.

Now here’s the clever part — the image from the objective lens becomes the 
object for the second lens. That is, the second lens looks at the image (which 
is real) just as though it were an actual object. Because light rays come 
together at the image, this works very well.

The second lens is called the eyepiece (not surprisingly, because that’s the lens 
that is closest to the eye). Everything is set up so that the first image, the one 
created by the objective lens, falls just inside the eyepiece’s focal length, fe. That 
ensures that the second lens magnifies the image to a very large size. You can 
see this in Figure 9-14.

This time, the eyepiece creates a virtual image (so you can see it by looking 
through the eyepiece, as with microscopes and telescopes). Thus, the final 
image ends up large and inverted, as you can see in Figure 9-14. But how 
large? What’s the magnification of such a combination of lenses?

Well, the image from the objective lens is magnified. Then this magnified 
image is the object for the eyepiece lens, which magnifies again. The total 
resulting magnification is the product of the magnification from each lens.
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Figure 9-14: 
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Here’s why it’s best to place the object not too far beyond the focal length of 
the objective lens in a microscope: If the object is between the center of cur-
vature and the focal length of a convex lens (as I explain earlier in “X marks 
the spot: Finding images from convex lenses”), then the image is real and has a 
greater size than the object — and this size increases as the object approaches 
the focal length. In its normal operation, a microscope needs a real image from 
the object, and the larger this image, the greater the magnification.

Getting a new angle on magnification
Magnification for microscopes and for telescopes is often figured in terms of 
angular magnification. That is, the object you want to look at takes up a certain 
angle of your vision (for example, the moon takes up about half of a degree of 
the 360° you can see by turning completely around), and if you use a telescope, 
the object looks larger (the moon may take up what seems like three times the 
same angle). The symbol for angular magnification is M. In this section, you use 
some formulas to find the magnification of microscopes and telescopes.

Getting up close and personal with microscopes
Microscopes are typically made from two converging lenses in combination. 
Here, the object is between one and two focal lengths from the objective lens. 
If the distance between the objective lens and the eyepiece lens is L, then the 
angular magnification for a microscope turns out to be the following:
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N is the distance to the near point for the eye. The near point is the closest 
you can hold, for example, some text and still read it. For a normal eye, N 
equals 25 centimeters.

Suppose you have an eyepiece with focal length of 5.0 centimeters and an 
objective lens with a focal length of 0.40 centimeters. The length between the 
two lenses, L, is 25.0 centimeters. What is the angular magnification of the 
microscope?

Plugging in the numbers — using N = 25.0 centimeters — gives you the answer:

So the angular magnification of the microscope is 250.

Bringing the heavens near with telescopes
Like microscopes, optical telescopes are frequently made with two converg-
ing lenses. With telescopes, the object you’re looking at is a far distance away 
compared with the distance to the eye’s near point, N, and the focal length of 
the objective lens.

In this case, you can make some approximations, and the angular magnifica-
tion of a telescope is about equal to the following:

Say, for example, that you have a telescope whose objective lens has a focal 
length of 100 centimeters and an eyepiece with the focal length of 0.5 centi-
meters. What angular magnification will the telescope give you?

You can use the angular-magnification equation and plug in numbers like this:

So the angular magnification of the telescope is about –200, where the nega-
tive sign simply means that the image is inverted.
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Chapter 10

Bouncing Light Waves: 
Reflection and Mirrors

In This Chapter
▶ Looking at reflections from flat mirrors

▶ Understanding images from curved mirrors

▶ Finding distances and magnifications

You can say a lot about mirrors — both plane (straight) mirrors and 
trickier spherical mirrors. As for spherical mirrors, you can get images 

in both concave mirrors (mirrors that look like the inside of a bowl) and 
convex mirrors (mirrors that look like the outside of the mirrored bowl). You 
can predict where images will form and whether they’ll be upright or upside 
down — no mean feat, given that those mirrors can act pretty wacky when 
you hold them in your hand (or put them on a funhouse wall).

In this chapter, you work with some basic properties of reflection, and you see 
how light bounces off both flat and curved surfaces. After you see some ray 
diagrams, I present a couple of equations so you can get down with the math.

The Plane Truth: Reflecting 
on Mirror Basics

Even people with the most casual disregard for their appearance probably 
see themselves in a mirror every day. The flat plane mirror you use so fre-
quently is also extremely important to optics. The basic law of how light 
reflects is expressed in terms of how light bounces off a plane mirror. Then, 

16_538067-ch10.indd   20516_538067-ch10.indd   205 6/1/10   10:15 PM6/1/10   10:15 PM



206 Part III: Catching On to Waves: The Sound and Light Kinds 

if you take any curved reflecting surface — like the ones in a carnival’s hall of 
mirrors — and look at it closely enough, it appears flat at every point (just as 
the Earth is curved, but because you see it so close up, it appears flat wher-
ever you’re on it). So if you know how light reflects off a flat surface, you also 
know how light reflects off every part of any curved surface — bargain!

This idea applies wherever reflection occurs from a flat surface, even if it’s 
not a mirror. So without further ado, here’s your introduction to mirrors and 
other reflective surfaces.

 Mirrors were often made of polished metal in the ancient world. These days, 
they’re commonly made of metal electroplated onto glass. And glass itself can 
form a partial mirror — if you stand next to a window and look out, you often 
see a ghostly image of yourself looking out in the window glass. You see that 
image because glass commonly reflects about 7 percent of the light that hits it 
instead of transmitting it through the glass.

Getting the angles on plane mirrors
Figure 10-1 shows a plane mirror — that is, a straight mirror — lying on 
its back. A light ray comes in from upper left in the figure, hits the mirror, 
bounces off the mirror, and leaves to the upper right.

The angle at which the light ray comes in to the mirror is called the angle 
of incidence, θi, and the angle at which light is reflected is called the angle 
of reflection, θr. Note that these angles are with respect to the normal — a 
normal is a line perpendicular to the mirror’s surface.

 

Figure 10-1: 
Reflection 
in a plane 

mirror.
 

θi θr

Mirror

Reflected ra
yIncident ray

 The angle of incidence is equal to the angle of reflection:

θi = θr
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That’s why when you’re driving and you see an approaching car’s image in 
your rear-view mirror, you know just which way to turn to see the actual car.

Forming images in plane mirrors
Plane mirrors are especially good at forming images. This section takes a 
look at image formation in a little more depth.

Mirrors form virtual images of objects, as you see in Figure 10-2. The image is 
virtual because no actual light rays meet to form that image (see Chapter 9 for 
more on virtual versus real images). In other words, you can’t focus the image 
on a screen at the place the image appears to come from.

 

Figure 10-2: 
Image 

formation 
in a plane 

mirror.
 Object

Mirror

Virtual image

 Here’s a set of observations you can make about an image formed in a plane 
mirror, besides the fact that it’s virtual:

 ✓ The image is upright.

 ✓ The image is the same size as the object.

 ✓ The image is located as far behind the mirror as the object is in front of 
the mirror.

 ✓ The image is flipped back to front (see the nearby sidebar “Reversing a 
mirror myth: the left-right flip”).
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Finding the mirror size
Many stores sell full-length mirrors, but that may be more about making 
profit than about image-formation necessity. In this section, I show that a 
plane mirror only needs to be one-half your actual height to let you see your-
self fully in a mirror. To see this, start with a picture — Figure 10-3:

 ✓ A person (represented by a thick black line) is standing to the left of a 
plane mirror. The line representing the person includes points labeling 
the position of the top of the head (T), the eyes (E), and the feet (F). 
(Note: To make the diagram clearer, the position of the eyes is shown 
much lower than it actually is — unless the person is wearing a top hat!)

 ✓ The vertical gray shaded line in the center represents a full-length plane 
mirror.

 ✓ The light rays leaving the person reflect from the mirror, creating an image, 
which is shown on the right as another thick, black line. The image has cor-
responding points labeled, showing the position of the image’s top of the 
head (T '), eyes (E'), and feet (F ').

The points A and B show where on the mirror’s surface the person sees the 
top of his or her head and feet, respectively. You can already tell that you 
don’t need the whole length of this mirror to see all of yourself, because the 
distance AB is much less than the length of the mirror, CD. With a little geom-
etry, you can work out exactly how big AB is — that is, how much of the full-
length mirror you really need.

Reversing a mirror myth: The left-right flip
If you hold your right hand up to a mirror, you 
find that its image looks like a left hand (so 
you wouldn’t be able to shake hands with this 
image — even if it were real and the mirror 
weren’t in the way!). You may wonder why the 
image flips left and right without also flipping up 
and down. But it actually does neither of these. 
To see why, try the following experiment:

 ✓ Stand in front of a mirror and point your 
finger to the left; you see the image of your 
hand also pointing to the left, parallel to 
your pointing direction. Therefore, left and 
right are not flipped.

 ✓ Now point your finger straight up, and you 
see the image of your hand pointing straight 
up, parallel to your pointing finger. So up 
and down aren’t flipped, either.

 ✓ Now try pointing away from yourself, 
straight into the mirror, and you see your 
image pointing straight toward you, out of 
the mirror — the complete opposite direc-
tion! So you can say that the mirror flips 
back to front.
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Figure 10-3: 
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Look again at Figure 10-3. You can see that the mirror is obeying the law of 
reflection: The angles of incidence and reflection from the rays from the top 
of your head, α, are equal. Then, because T 'E is a straight line, the angle that 
it makes with your image must also be α. This means that the triangle T 'ET 
is similar to triangle T 'AD — because they’re both right triangles that also 
share the angle α.

You also know that the image is as far behind the mirror as you are in front 
of it, so T 'A is half the length of T 'E. Because you have similar triangles, that 
means triangle T 'AD is half the size of T 'ET — which means that AD is half the 
length of ET:

You can do exactly the same thing for triangles F 'EF and F 'BC, because you 
can see that they’re similar for the same reason. So BC is half the length of EF:

Now all you have to do to find the length of mirror you actually need is to 
subtract these two unused lengths (AD and BC) from the total (CD):

AB = CD – AD – BC
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Now try some numbers. If your height (TF) is 1.66 meters, how big does the 
mirror have to be so you can see your full length in the mirror? The full-
length mirror, CD, is likewise 1.66 meters. Suppose your eyes are 0.06 meters 
below the top of your head (ET). That means the distance from eyes to feet 
is then TF – ET = 1.60 meters. You can now work out the length of the part of 
the mirror that you use:

This is half your height — you don’t need a full-length mirror; you only need 
a half-length mirror.

Note that you may have seen this much more quickly by noticing that the 
triangle T 'F 'E is similar to triangle ABE and that ABE must be half the size of 
T 'F 'E (because the image is as far behind the mirror as the object is in front). 
Therefore, AB must be half the length of T 'F '. Then, because your image is 
the same size as you are, AB is just half your height!

Working with Spherical Mirrors
A plane mirror makes an image that’s the same size as the original object, at 
a position that’s as far behind the mirror as the object is in front. When the 
mirror is curved, then the position, size, and orientation of the image can be 
very different. The inside or outside surface of a sphere creates such images. 
This is a convenient shape of mirror to study because it’s simple, though you 
usually use only part of the surface of a sphere rather than the whole.

 There are only two ways of looking at spherical mirrors — as convex and 
concave. Remember, if you’re looking into a mirrored “cave,” that’s a concave 
mirror. Otherwise, it’s convex.

 Like lenses (see Chapter 9), spherical mirrors have a center of curvature. 
That’s the center of the sphere that the mirror was cut from, and it’s marked 
C in Figure 10-4. The distance from the center of curvature, C, to the mirror 
is called the radius of curvature, R. There’s also a focal point, marked F. The 
focal point is where light rays that come in horizontally from the left end up 
being focused. The focal length is half of the radius of curvature, or looked at 
another way, R = 2f.

How do you handle spherical mirrors? You can draw ray diagrams that trace 
how several light rays travel from an object, bounce off the mirror, and end up 
forming an image (just as for lenses, which I cover in Chapter 9). In this section, 
I show you how to draw ray diagrams for both concave and convex mirrors.
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Figure 10-4: 
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Finding practical uses for curved mirrors
Spherical mirrors are used in many everyday 
devices, such as magnifying makeup mirrors 
and the security mirrors in shops. They’re also 
used to turn the light from a light bulb into a 
beam in car headlights and flashlights. There’s 
even a legend that Archimedes (the famous 
Greek mathematician who ran down the street 
shouting “Eureka!”) had an idea to use curved 
mirrors as a weapon of war, focusing the sun’s 
rays onto enemy ships and setting them on fire!

Curved mirrors are also used to make the 
largest telescopes in the world. Why mirrors? 
Because it’s easier to build a large mirror than 
a large lens. Not only do you have to shape only 

one side, but also you can support the large 
mirror all along its unsilvered side to stop it from 
curving further under its own weight.

Mirrors in telescopes aren’t quite spherical. 
Anyone who has looked at his or her reflection 
in the back of a spoon or visited a hall of mirrors 
knows how the curves of a mirror can create 
very distorted images. When objects are very 
far from a spherical mirror, then the distortion 
is very small, but for the very fine level of preci-
sion required for astronomy, these distortions 
are too large, and corrections to the spherical 
curve are made to improve the image.
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Getting the inside scoop on concave mirrors
For a concave mirror, the part of the mirror that does the reflecting is on 
the inside of the spherical mirror. For concave mirrors, three different cases 
yield different types of images:

 ✓ The object is out farther than the center of curvature.

 ✓ The object is between the center of curvature and the focal point.

 ✓ The object is located between the focal point and the mirror itself.

This section takes a look at the various possibilities, starting by placing the 
object beyond the center of curvature and finding where the image forms.

Object farther out than the center of curvature
Figure 10-5 shows an object (represented by the thick arrow) being reflected 
in a concave mirror. Look at the ray diagram to see where the image will 
form in this situation and whether it’s upright or upside down. Here’s how 
the rays work:

 ✓ Ray 1: The first ray goes from the tip of the object to the mirror, where 
it bounces off and then goes through the center of curvature. Obviously, 
the center of curvature of a sphere is the center of the sphere, and any 
straight line passing through the center of a sphere is normal (perpen-
dicular) to its surface, so this light ray strikes the mirror with an angle 
of incidence of zero. The angle of reflection is the same, so the ray is just 
sent back the way it came.

 ✓ Ray 2: The second ray goes from the tip of the object through the focal 
point, and then it gets reflected in a horizontal direction — that’s the 
key for Rays 2 and 3: These rays alternate between going through the 
focal point and going horizontally.

 ✓ Ray 3: The third ray starts off from the tip of the object in a horizontal 
direction, bounces off the mirror, and ends up going through the focal 
point.

The rays meet to form an image that’s inverted with respect to the object, 
between the radius of curvature and the focal point.

Is this image real or virtual? It’s real, because it forms on the side of the 
mirror where the object is — that’s where the rays are present physically 
(virtual images form on the other side of the mirror, where no light rays from 
the object are actually present). If you bring a screen up to the location of the 
image, you see the image focused there — that’s what makes it a real image.
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Object between the center of curvature and the focal point
Figure 10-6 shows an object being reflected in a concave mirror when the 
object is placed between the center of curvature and the focal point. Here’s 
how to draw the three rays in the figure:

 ✓ Ray 1: The first ray goes from the tip of the object through the center of 
curvature to the mirror, where it’s reflected back on its same path.

 ✓ Ray 2: The second ray travels from the tip of the object horizontally 
until it hits the mirror. Then it’s reflected — and as is usual for rays that 
hit the mirror horizontally, it gets reflected through the focal point.

 ✓ Ray 3: The third ray travels from the tip of the object through the focal 
point, then to the mirror. When it’s reflected from the mirror, the ray is 
traveling horizontally.

What’s the net result? As you can see in Figure 10-6, the image is real (on the 
same side of the mirror as the object), inverted with respect to the object, 
and out past the center of curvature.

Object between the focal point and the mirror
Now for something really different — you end up with a virtual image in this 
case. If you place an object between the focal point of a spherical mirror and 
the mirror itself, all the rules change, because rays from the object can’t pass 
through the focal point and then bounce off the mirror anymore.
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As you can see in Figure 10-7, you’re dealing with three rays:

 ✓ Ray 1: The first ray goes from the tip of the object to the center of curva-
ture, and you extend the ray back to the mirror to complete this ray.

 ✓ Ray 2: The second ray goes from the tip of the object horizontally to the 
mirror — then it reflects from the mirror and goes through the focal point.

 ✓ Ray 3: The third ray is the tricky one. Normally, this ray goes from the 
tip of the object through the focal point and ends up going horizontally, 
but that’s not going to work here, because if you send this ray through 
the focal point, it’ll never hit the mirror. Instead, you send this ray from 
the tip of the object to the mirror as though it were coming from the focal 
point, as you can see in Figure 10-7. That does the trick.

Where do these rays come together? That’s a trick question, because they 
don’t come together at all — you have to extend the reflected rays behind 
the mirror itself. And with mirrors, that’s the mark of a virtual image (that 
is, no light rays from the object penetrate behind the mirror, so the image 
that forms there is not actually caused by light rays that meet there — you 
can’t bring a screen there and focus the image). So the image is virtual — and 
upright and magnified — as you see in the figure.

So the next time you’re creating a salad in a mirrored metal bowl, take a look 
at what happens when you bring the lettuce close to the metal. As you pass 
the focal point, the image of the lettuce suddenly snaps into focus as upright 
and enlarged — and you get an image of some mega-sized lettuce.
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Smaller and smaller: Seeing 
convex mirrors at work
Turn a mirrored bowl over so you’re looking at the bottom of the bowl, and 
you have a convex mirror. Instead of bending light toward you, convex mir-
rors bend light away.

So what happens if you bring an object near a convex mirror? You can see 
the answer in ray diagrams in Figure 10-8. This time, the focal point and the 
center of curvature are on the other side of the mirror, so there’s no ques-
tion of different placement here (such as placing the object between the focal 
point and the center of curvature, placing the object closer than the focal 
point to the mirror, and so on). You can place the object only as Figure 10-8 
shows — on the other side from the focal point and center of curvature.

You have the same three rays as with concave mirrors (see the preceding 
sections), but using them takes some fancy footwork. Here goes:

 ✓ Ray 1: The first ray goes from the tip of the object toward the center of 
curvature — but note that the center of curvature is on the other side 
of the mirror this time. That means that this ray goes from the tip of the 
object to the mirror and then bounces off in a way that it would as if it 
were coming from the center of curvature.

 ✓ Ray 2: The second ray travels from the tip of the object horizontally 
and then bounces off the mirror in a way that makes it appear this ray is 
coming from the focal point, as you can see in the figure.

 ✓ Ray 3: The third ray goes toward the focal point, which is on the other 
side of the mirror, and then bounces off the mirror, ending up going 
horizontally.
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The result of all this? As you can see in the figure, the image is virtual (on the 
opposite side of the mirror from the object, where no light rays go), upright, 
and smaller than the object. Cool.
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The Numbers Roundup: Using Equations 
for Spherical Mirrors

Just as with the lenses (see Chapter 9), you can work out the location, size, 
and orientation of an image made by a spherical mirror with a couple of 
simple equations. These equations derive only from the law of reflection (the 
angle of incidence is equal to the angle of reflection) applied to every point 
of the curved surface of the mirror. But you don’t have to worry about that 
here — I just give you the equations and show you how they work.

In this section, the mirror equation shows how the distances from the curved 
mirror to the object (do) and the distance from the mirror to the image (di) 
relate to the mirror’s focal length (f). I also show you how to find magnifica-
tion (m) when you know both do and di.
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Getting numerical with 
the mirror equation

 An equation for mirrors, cleverly called the mirror equation, relates the dis-
tance from the object to the mirror (do) and the distance from the mirror to 
the image (di) to the mirror’s focal length (f). Here it is:

You may notice that, yep, this looks a lot like the thin-lens equation from 
Chapter 9. However, you have two ideas that are different from the thin-lens 
equation to keep in mind:

 ✓ The distance to the image, di , is negative if the image is on the other 
side of the mirror from the object. That is, di is negative if the image is 
virtual.

 ✓ The focal length, f, for convex mirrors is negative (that’s just like the 
rule that the focal length for diverging lenses is negative, as I explain in 
Chapter 9).

 The sign rules for mirrors are essentially the same as those for lenses: If the 
image is on the outgoing side (the side into which the rays are reflected by 
the mirror), the image distance is positive; otherwise, it’s negative — just as 
for the lens. The sign rule for the focal length is reversed for mirrors because 
a convex mirror diverges parallel light rays — as does a concave lens — and 
vice versa.

di for an object between the focal length and the center of curvature
Try some numbers. Say you have a concave mirror that has a focal length of 
5.0 centimeters, and you place an object 8.0 centimeters in front of it. Where 
does the image form? Start with the mirror equation:
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Solve for the image distance, di, by rearranging the equation, combining the 
fractions, and simplifying:

Plugging in the numbers gives you the answer:

So the result is positive, which means the image is real.

di for an object between the mirror and the focal length
How about this one? Say you have a concave mirror with a focal length of 
5.0 centimeters, and you place an object 3.0 centimeters in front of it. Where 
does the image form? Use the mirror equation solved for the distance to the 
image (from the preceding section) like this:

Plugging in the numbers gives you the following:

So in this case, the distance to the image is negative — which means that 
image is virtual. That’s as expected, because in this case, you’re placing an 
object between a concave mirror and its focal point.

di for a convex mirror
Here’s one more. Say this time that you have a convex mirror (not concave) 
with a focal length of –5.0 centimeters, and you place an object 7.0 centime-
ters in front of it — where does the image appear?
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Note that in this case, the focal length is negative, which it must be for a convex 
mirror. You can use mirror equation solved for the image distance, d i, like this:

Putting in the numbers gives you

So in this case, the image is virtual.

Discovering whether it’s bigger 
or smaller: Magnification
The magnification equation gives you the amount an image is magnified with 
respect to the object — that is, the ratio of the image height over the object 
height. This equation for mirrors is just the same as it is for lenses, which I 
cover in Chapter 9:

where di is the distance to the image and do the distance to the object.

Doing a magnification example
Suppose an object is 7.0 centimeters from a convex mirror (do = 7.0 centimeters). 
The mirror has a focal length of –5.0 centimeters, and your calculations (from 
the preceding section) tell you that di = –2.9 centimeters. What’s the magnifica-
tion of the image compared to the object? Use the magnification equation:

Putting in the numbers gives you the answer:

In this case, the magnification is 0.41 — the image height is 0.41 times the 
object height, and the image is upright (because the magnification is positive). 
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Remember: Magnification doesn’t always mean that the image is larger — the 
image here is smaller than the object (less than half the size).

Using the mirror equation and magnification equation together
 In general, you have to use the mirror equation to find do first; then you can 

plug that into the magnification equation to find the magnification.

Say that you have a concave mirror, with a focal length of 8.0 centimeters, 
and you place an object 10.0 centimeters in front of it. What’s the magnifica-
tion of the image? First, you have to find the distance to the image. Use the 
equation mirror equation, solved for di:

In this example, you get

So di = 40 centimeters — it’s positive, so the image is real. That means that 
the magnification is

So the magnification is –4.0 — that is, the image is four times the height of 
the object. The magnification is negative, which tells you that the image is 
inverted.

So now you know everything about what’s happening in this example — 
where the image appears, whether it’s upright or inverted, whether it’s real 
or virtual, and how big i is. Not bad for two little equations (the mirror equa-
tion and the magnification equation).
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Chapter 11

Shedding Light on Light Wave 
Interference and Diffraction

In This Chapter
▶ Understanding light wave interference

▶ Getting coherent light sources

▶ Looking at diffraction from a single slit

▶ Working with the multiple slits of diffraction gratings

▶ Finding resolving power when light passes through a hole

This chapter is all about interference — that is, what happens when light 
waves collide. Interference is a property of all waves (as you discover 

in Chapter 6). Because light waves are actually electromagnetic waves, their 
electric and magnetic fields can add or subtract if they overlap with each 
other. The resulting electric fields and magnetic fields can be stronger — 
or weaker — than the fields of either light wave alone, giving rise to some 
phenomena you may not expect. This chapter starts with the interference of 
two light waves and goes on from there.

Interference is the interaction of waves from a few sources, but the interfer-
ence of waves from a great many sources is called diffraction. I discuss dif-
fraction of sound waves in Chapter 7, where sound waves bend and spread 
when they fall upon a gap in a wall. In this chapter, you become much more 
familiar with diffraction for light waves, using Huygens’s principle. This is a 
new way of thinking about how waves propagate, and it explains why they 
can bend around corners and spread out when they pass through gaps in 
walls. Huygens’s principle shows how diffraction is really just the interfer-
ence of a lot of waves and not something completely new.
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When Waves Collide: Introducing 
Light Interference

When two or more light waves interfere with each other, it’s called just that — 
interference. Interference occurs when the electric and magnetic fields of two 
or more light waves interact. The electric and magnetic fields of the two waves 
add together to give you a new wave.

 To see interference, you have to have two light sources, one for each wave, 
that emit light of exactly the same wavelength. If you don’t, then the relative 
phase between the light waves will change with time, and you won’t see con-
structive interference (where the fields are in the same direction, resulting in 
an even stronger field) or destructive interference (where the fields are in the 
opposite direction and cancel each other out).

When two light sources emit the same wavelength of light continuously, 
they’re called coherent sources. This is the importance of coherent light — it 
makes the interference effects of light observable:

 ✓ To get constructive interference, you need the peaks of the waves to 
line up.

 ✓ To get destructive interference, you need the peak of one wave to line 
up with the trough of another.

But generally, to get interference, you just need there to be a constant rela-
tion between the two phases. This can only come from coherent waves. In 
this section, you see how constructive and destructive interference work 
when you have two coherent light sources.

Meeting at the bars: In phase 
with constructive interference
Because light is indeed an electromagnetic wave, you know that it’s made up of 
electric and magnetic fields. Figure 11-1 presents the electric fields for two light 
waves. Note what happens when they both end up at the same place, which I call 
point P, at the same time. As you can see, the two waves I’m adding are in phase. 
That means that when they meet, the peaks of one wave add to the peaks of the 
other, and the troughs of one wave add to the troughs of the other. That is, when 
two waves are in phase, they meet peak-to-peak and trough-to-trough.

The electric fields of the light waves simply add. The two waves have equal 
amplitude, so the resulting wave’s peaks are twice as high, and its troughs 
are twice as low.
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 When you add two light waves from coherent sources, their electric and mag-
netic fields add linearly. This is called the principle of linear superposition.

 

Figure 11-1: 
Adding two 

in-phase 
light waves 

together.
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When two light waves collide as they do in Figure 11-1, peak-to-peak and 
trough-to-trough, and each light wave has the same wavelength (so they 
keep adding peak-to-peak and trough-to-trough as time goes on), the result is 
larger than either of the two waves by themselves; this process is called con-
structive interference. With constructive interference, the resulting light wave 
is stronger than either of its two components.

Getting ghostly images
Interference is at the heart of the workings 
of CDs, DVDs, and nowadays, Blu-ray Discs. 
Holographic images use interference to make 
three-dimensional images. But interference 
isn’t always useful; sometimes it’s an obstacle 
to be overcome.

Back in the day (before TV went digital), people 
who lived in metro areas with plenty of build-
ings often experienced this superposition of 
waves for themselves if they happened to have 
a television that had an antenna. The TV sig-
nals coming from the station would leave the 
station’s antenna and come to the TV — but 
waves could also leave the station, bounce off 
a building, and come to the antenna. That meant 
the antenna had to deal with two signals — and 
they added up (or sometimes canceled). The TV 

signal would appear to go all wacky, and people 
would get ghost images and shadows and the 
like — until they moved the antenna to get rid of 
the problem. Today’s digital signal is carried by 
the same kinds of waves, so there’s still inter-
ference, but it’s not apparent in the same way. 
Digital signals are processed, so you lose the 
ghost images.

Interference is also an issue for phone net-
works. With so many mobile phones around, 
each sending and receiving radio signals, it’d 
be very easy for all the signals to interfere with 
each other, making one muddle of a signal. 
Some very clever technology overcomes this 
interference and makes sure all these signals 
stay separate.
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So if the two light waves that add in Figure 11-1 are in phase, the magnitude 
of the electric field from Wave 1 at point P is

E1 = Eo sin(ωt)

And the magnitude of the electric field of light Wave 2 at point P is

E2 = Eo sin(ωt)

That is, they reach their peaks and troughs at the same time, so they’re in phase. 
When both these waves are present, then the total electric field is given by

E1 + E2 = 2E
0
 sin(ωt)

This is just a wave which has the same frequency but twice the amplitude. 
This sum of the two waves is the linear superposition.

Going dark: Out of phase with 
destructive interference
Two waves don’t need to meet peak-to-peak. They can meet out-of-phase, as 
Figure 11-2 shows. The waves are meeting at some point P, peak-to-trough 
and trough-to-peak. In other words, just when one wave is at its highest, the 
one it’s interfering with is at its lowest, and vice versa.

In particular, the two waves in Figure 11-2 are as out of phase as they can be. 
They add together and cancel each other out. There’s nothing left — they’re 
opposites of each other, and when they meet, the result is zero. When two 
waves cancel each other out like that, that’s called destructive interference.

 

Figure 11-2: 
Subtracting 
two out-of-
phase light 

waves.
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Does this come in a medium?
In the 19th century, people thought that light, 
being a wave, must be carried by a medium. 
They believed that just as sound waves were 
carried by air, light waves were carried by a 
medium called luminiferous ether.

In 1887, Albert Michelson and Edward Morley 
used the following setup — an interferometer — 
and got a result that puzzled physicists. Michelson 
and Morley used this experiment to measure 
the movement of the Earth through the ether. 
They shone a beam of coherent light toward a 
semi-silvered mirror (S) that let half of the light 
pass straight through to the mirror at point M2 

while half reflected up toward the mirror at point 
M1. The two parts of this separated beam were 
reflected back from these mirrors and recom-
bined, having traveled in the two directions at 
90° to each other. The mirror at M1 could be 
moved so that these beams destructively or 
constructively interfered — that is, the path-
length difference, 2(l1 – l2), was a whole number 
of wavelengths (constructive interference) or 
that plus half a wavelength (destructive inter-
ference). The light waves should travel with 
constant speed with respect to the ether.

M1

M2S

E

Light
source

I2

I1

Suppose the setup was arranged so that the 
beams destructively interfered. The experiment-
ers expected that the speed of the light in each 
direction would depend on the motion of the 
Earth through the ether. This would mean that 
when the mirror was rotated 90°, there should 
be a difference in the relative phases and they 

should no longer have destructive interference. 
But Michelson and Morley saw no difference 
whatsoever! This could only mean that there 
was no ether. Only when Einstein developed 
the special theory of relativity (which I cover in 
Chapter 12) did this result make sense.
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In contrast to the waves in Figure 11-1, the two light waves in Figure 11-2 are 
as out of phase as possible. So if the first one looks like this at point P:

E1 = Eo sin(ωt)

then the magnitude of the electric field of Wave 2 at point P is

E2 = Eo sin(ωt + π)

In these equations, when one wave is hitting its peak, the other is hitting its 
trough. They’re out of phase by an angle of π — and that’s as out of phase as 
you can get.

When both these waves are present, then the total wave that results is just 
the sum:

E1 + E2

 = E0 sin(ωt) + E0 sin(ωt + π)

 = E0 sin(ωt) – E0sin(ωt)

 = 0

So you see that the two waves cancel out. The linear superposition of the two 
waves results in no wave at all.

Interference in Action: Getting 
Two Coherent Light Sources

Generally, when a number of waves interfere with each other, there are 
places where constructive interference occurs and other places where 
destructive interference occurs (see the earlier section “When Waves Collide: 
Introducing Light Interference” for info on types of interference). The result is 
a pattern of bright and dark areas, with intermediate brightness in between. 
This makes a pattern called the interference pattern.

Generally, to be able to see the interference pattern, you need to have a 
constant phase difference between the waves. For this, you need coherent 
light sources, which give you light waves that are of the same frequency. So 
how do you get two coherent light sources in the first place? In this section, 
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I discuss two methods: sending light from a single source through two slits 
or sending light through a thin film, using principles of reflection and refrac-
tion to split the light for you. I also show you the arrangement of the light and 
dark areas of the interference pattern in these cases.

Splitting light with double slits
Before the invention of lasers, one clever way to get two coherent light 
sources was to use the same source for both light rays by sending light 
through a double-slit arrangement.

If you send light of a particular color (and therefore of a particular wave-
length) through the double slits, the two slits then act as two coherent 
light sources — each with the same wavelength. This kind of setup is called 
Young’s double-slit experiment (credited to Thomas Young), and it provided 
some early proof of the wave nature of light. In this section, you see how 
double slits produce an interference pattern, predict where constructive and 
destructive interference occur, and look at some numbers.

Getting an interference pattern
When you send light from a single source through two slits, you now have 
two coherent light sources (the two slits, as Figure 11-3 shows). Those slits 
are arranged so that light from them falls on a screen, which you see at the 
right of the figure.

 

Figure 11-3: 
Light pass-
ing through 

two slits 
gives you 
light and 

dark bands 
of light.
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 Say that light from one slit illuminates a specific spot on the screen. Then light 
from the other slit falls on the same spot on the screen, and the two light 
waves interfere. Do they interfere constructively or destructively? That 
depends on how far the spot is from each of the two slits:

 ✓ Constructive: If the spot being illuminated is an integral number of light 
wavelengths from one slit, mλ, and it’s nλ from the other slit (where m 
and n are integers and n can equal m), then the two light waves hit the 
spot in phase — peak-to-peak, trough to trough. You end up with con-
structive interference, which causes a bright spot on the screen.

 ✓ Destructive: If the spot is at a distance from one slit that is an integral 
number of wavelengths, mλ, and the distance to that spot from the other 
slit is an integral number of wavelengths plus one-half wavelength, (n + 1⁄2)λ 
from the other slit (where m and n are integers), then the two waves meet 
at the spot exactly out of phase, so there’s destructive interference. The 
result is a dark spot.

You can see this situation more clearly in Figure 11-4. There, the distance 
between the slits is d, and the slits are a distance L from the screen. The 
curve at the screen represents the light intensity at every point (intensity is 
related to the mean of the squared electric field — see Chapter 8). The result-
ing light and dark regions, called the interference pattern, appears on the 
screen at right.

 

Figure 11-4: 
The 

schematic 
for a 

double-slit 
setup.
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The figure shows that you have a central bright bar, which is equidistant from 
the two slits, where constructive interference occurs. Then as θ increases, you 
have destructive interference between the rays from the two slits, and you get 
a dark bar. Then you get another light bar as the light rays end up in phase 
again — note that this light bar is less bright than the central bar.
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That’s what the interference pattern looks like — a central bright bar (also 
called a fringe) surrounded by dark bars and then alternating with successively 
diminishing light and dark bars. Here’s how the naming of these bars works:

 ✓ The central bright bar is called the zeroth-order bright bar (or zeroth-
order bright fringe).

 ✓ The next bright bar over is called the first-order bright bar. You have two 
of these, one on either side of the zeroth-order bright bar.

 ✓ The next bright bar is called the second-order bright bar, and so on.

Predicting where you get dark and light spots
Take a closer look at the double slits and the angle involved in Figure 11-5. To 
predict whether you end up with a light spot or a dark spot on the screen at 
a certain angle θ, you have to know the difference in how far that spot is from 
the two slits.

So what’s the difference in the distance the light travels from each slit to 
the same spot on the screen? That difference in distance is marked as Δd in 
Figure 11-5. Because the screen is a long way from the slits, you can assume 
the two light rays are parallel, so each is emitted from their respective slits 
at the same angle θ. You also make the assumption that d is much less than L, 
the distance from the screen.

 

Figure 11-5: 
A close-up 

of double 
slits.

 

d

Δd

θ

As you can see in the figure, the difference in distances from the two slits to 
the same spot of the screen is

Δd = d sin θ
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So sin θ is equal to

 Note that when Δd is an integral number of wavelengths, you end up with con-
structive interference, which means that for all the bright bands in the inter-
ference pattern, the following equation holds true:

 And when Δd is an integral number of wavelengths plus one-half wavelength, 
you end up with destructive interference and a dark band on the screen. So 
for destructive interference, you have this relation:

So now you have a handle on whether you get a bright bar or a dark bar at a 
certain angle from the two slits.

Trying some numbers for double slits
Say that you shine red light (λ = 713 nanometers) on two slits a distance of 
2.00 × 10–4 meters apart, and an interference pattern appears on a screen 2.50 
meters away. How far is it from the zeroth-order bright bar in the center of 
the interference pattern on the screen to the third-order bright bar?

For bright bars (constructive interference), this is the equation to use:

In this case, you can find the angle between the zeroth-order bright bar and 
the third-order bright bar by setting m equal to 3:

Convert the wavelength to meters to get λ = 713 nanometers = 7.13 × 10–7 meters. 
Putting in the wavelength and the distance between the slits gives you

Taking the inverse sine gives you θ:

θ = sin–1(1.07 × 10–2) ≈ 0.613°
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That’s a pretty small angle, but perhaps it’ll come to something when you 
take into account how far away the screen is.

You know that the distance between the slits and the screen is 2.50 meters. 
That length forms the horizontal side of a right triangle where the vertical 
side is the distance between the bright bars that you’re looking for and the 
angle between those two sides is θ. That means that if y is the length you’re 
looking for, you have the following:

Plugging in the numbers and doing the math gives you the answer:

y = (2.50 m) tan(0.613°) ≈ 2.67 × 10–2 m

So the distance between the central bright bar and the third-order bright bar 
is 2.67 centimeters, which is roughly an inch. As you can see, even though 
red light has a very small wavelength, 7.13 × 10–7 meters, you still get a 
measureable effect when you position the screen far enough away from the 
double slits and position the double slits close enough together.

Gasoline-puddle rainbows: Splitting 
light with thin-film interference
Ever see some oily liquid like gasoline spilled on a puddle of water? If so, you 
probably saw rainbows of color form in the layer of gasoline. This same effect 
is responsible for the rainbows you see in soap bubbles. What you’re really 
seeing is constructive and destructive interference patterns for different 
wavelengths of light — the constructive interference leads to a bright band of 
color. In this section, you take a look at how this process works — it’s called 
thin-film interference.

Sending light rays on different paths
Suppose you have light going from air (where the index of refraction is n

a
 = 1.00) 

to gasoline (n
y
 = 1.40) and then to the underlying layer of water (n

w
 = 1.33), as 

Figure 11-6 shows (I discuss indexes of refraction in Chapter 9). At each step, 
there’s some reflection, as you see in the figure — and the two rays heading off 
to the right end up interfering with each other, much as if they came from two 
coherent light sources.
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Figure 11-6: 
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other.
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Here’s a blow-by-blow description of what happens with thin-film interference:

 1. Light travels through air to start, coming in from the upper left.

 2. The light hits the air-gasoline boundary.

  Some of the light is reflected from the boundary and heads off to the 
upper right.

  Most of the light continues into the gasoline and is refracted toward the 
normal (a perpendicular line) to the gasoline-air boundary.

 3. The light reaches the gasoline-water boundary, and some of the light 
bounces off the gasoline-water boundary and is reflected.

 4. The reflected light hits the gasoline-air boundary.

  Some light goes through the gasoline-air boundary and is refracted away 
from the normal. It ends up parallel to but horizontally displaced from 
the other light ray going off to the right.

 5. The two light rays that end up going off to the right interfere with 
each other, and the difference in the lengths of their paths (one ray 
goes through the gasoline) means that they can be out of phase.

  When that path-length difference for the two waves is a multiple of the 
light’s wavelength, you get constructive interference, and hence that 
region of the film is bright.

 With thin-film interference, you assume that the thin film has a uniform thick-
ness, but in practice, this isn’t true — the thickness of a thin film of gasoline 
or soapy water in a soap bubble actually varies somewhat from place to place, 
which is why you get bands of color instead of one uniform color.
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Accounting for changes in the wave’s phase
When working with thin-film interference, you have to take one more effect into 
account besides the difference in path length: a phase change in the wave.

If you tie a rope to a wall and whip one end of the rope up and down, a pulse 
travels along the string to the wall. When it hits the wall, the rope reflects the 
pulse back — but first, the pulse is inverted. That is, it suffers a phase change of 
exactly one-half wavelength. So the pulse travels to the wall, hits the wall, gets 
inverted, and travels back to you, assuming there’s some tension in the rope. 
On the other hand, if the end of the rope is just hanging free, a pulse is still at 
least partially reflected from the end of the rope, but there’s no phase change.

 Something similar happens to light at boundaries between materials that have 
different indexes of refraction:

 ✓ Low to high: When light, traveling through a medium, reflects from an 
interface with a material of higher refractive index (such as light in air 
reflecting from gasonline), there’s a phase change in the reflected light 
of half a wavelength — half of the wavelength that the light would have 
in the material with the higher index of refraction.

 ✓ High to low: When light, traveling through a medium, reflects from 
an interface with a material of lower refractive index (such as light in 
gasoline reflecting from water), there’s no phase change in the reflected 
light.

When this phase change occurs, you have to take it into account — it’s as if 
the light ray traveled an additional one-half wavelength. Here’s how you show 
that mathematically:

Doing some thin-film interference calculations
Say that there you are, filling up your car with gasoline, and notice that the 
previous customer was a little careless — some gasoline landed on a puddle 
next to your car. On closer inspection, you see that the film looks yellowish, 
and the time is just about noon, so the sunlight is hitting the gasoline film 
just about vertically. What’s happening, and what minimum thicknesses of 
gasoline film on the water gives you this result?

Sunlight is pretty white because it’s made up of all the wavelengths you 
normally see, from red to violet. The eye perceives white light with most of 
the blue part removed as yellow light, so if you see reflected sunlight from 
the gasoline film as yellowish, a lot of blue must be missing. (This is why the 
white sun ends up looking yellow — most of the blue wavelengths have been 
scattered away to make the sky blue!)
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In other words, the gasoline film is just thick enough to give you destructive 
interference of blue light (which has a wavelength in air of 469 nonmeters). 
Wonderful, you’re on your way to solving this problem.

What conditions give you destructive interference of the blue light? Well 
that’s simple — if the light ray labeled A in Figure 11-6 is out of phase with 
Ray B, then they destructively interfere. 

How does this phase difference come about? First, it happens because Ray B 
travels a greater distance than Ray A, because Ray B has to travel to the 
bottom of the gasoline film and reflect back up — a distance of about twice 
the thickness of the film. If the thickness of the film is t, then Ray B travels 
an extra distance of 2t compared to Ray A. As it travels this distance, Ray B 
makes a number of wave cycles that’s equal to the number of wavelengths of 
the light in the distance traveled. For example, if the film is one wavelength 
thick, then Ray B goes through two cycles as it travels to the bottom and 
reflects back up (remember the extra distance covered is 2t).

If Ray B goes through a whole number of cycles as it travels through the film 
of gasoline, then

where λgas is the wavelength of the blue light in the gasoline and m is a whole 
number.

If this is the case, then Ray A and Ray B are in phase and constructively 
interfere, right? Nope. You need to account for the phase shifts that can 
occur when light reflects. Ray B reflects from within the gasoline film off the 
gas-water surface (Step 3 in the preceding section). But because water has a 
lower refractive index than gas, there’s no phase shift for this ray. However, 
Ray A reflects from the air off the air-gasoline surface (Step 2). Because the 
gasoline has a higher refractive index, this ray undergoes a phase shift of half 
a cycle. So in this case, Ray A and Ray B are now out of phase when the pre-
ceding equation holds, in which case the rays destructively interfere. 

All you need to do now is work out the wavelength of the blue light in gaso-
line. The key is to realize that the frequency of the light is always the same, 
whatever the material it’s traveling through. Only its speed and wavelength 
change for different refractive indexes.

If you take the equation for the refractive index of a material and divide the 
top and bottom of the fraction by the frequency, f, you get the following:
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But because you know that the wavelength is just the speed divided by the 
frequency, you can write this as

Rearrange this and write an equation for the wavelength of the light in gasoline:

Put in the numbers to work out the wavelength of the blue light in gasoline. 
You know the wavelength of the blue light in air is λair = 469 nm and the 
refractive index of gasoline is ngas = 1.40, so

At last you can work out how thick the gasoline film needs to be to give you 
destructive interference for the blue light and so make the sunlight appear 
yellow. From earlier in this section, you know that the thickness has to be 
related to the wavelength of the blue light in gasoline by

The minimum occurs when m = 1, in which case the thickness of the film is

So there you have it — the gasoline film needs to be 168 nanometers thick so 
that you see yellow light in the puddle.

Single-Slit Diffraction: Getting 
Interference from Wavelets

People usually think of light traveling in straight lines. However, in certain 
circumstances, light can bend around corners to reach places it couldn’t go 
if it traveled only in a straight line (just as sound waves can bend around cor-
ners; see Chapter 7). You don’t usually notice this effect because the small 
wavelengths of light usually make this bending quite small.
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This bending, called diffraction, comes from the interference of a very large 
number of waves. In this section, I explain why light spreads out when it 
passes through a single slit, and you see the strange patterns of light and 
dark created when it does. You also discover a way to use this effect to make 
precise measurements of wavelength.

Huygens’s principle: Looking at how 
diffraction works with a single slit
Figure 11-7 shows a single slit and the intensity of light as it appears on 
a screen some distance away from the single slit. How on Earth do you 
get interference from a single slit? This process is called diffraction, and it 
depends on the idea that every point on the front of a wave acts like a coher-
ent source of light. All those point sources that make up a wave front are 
responsible for the interference pattern.

 

Figure 11-7: 
Single-slit 

diffraction.
 

Interference
pattern

Intensity

Coherent
light source

 Diffraction all comes about because of Huygens’s principle, which says the 
following:

“Every point on a wave front acts as a source of wavelets that move for-
ward with the speed of the overall wave; at any later time, the wave is 
that surface that is tangent to all the moving wavelets.”

So every point of the wave front going through a single slit (of some width W), 
as you see in Figure 11-8, acts as a coherent source of wavelets. If that light then 
strikes a screen, the result of all the wavelets is a pattern of light like the one in 
Figure 11-7 — a wide central bright bar or fringe, flanked by successively smaller 
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bright bars, with dark bars in between them. If light didn’t obey Huygens’s prin-
ciple, then you’d get no pattern from a single slit — you’d just see the image of 
the single slit on the far screen.

 

Figure 11-8: 
A schematic 

for the 
first dark 
bar with 

single-slit 
diffraction.
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Getting the bars in the diffraction pattern
So how do you get dark bars in the diffraction pattern when you have light 
going through a single slit? This section explains where all those dark bars 
come from.

Arriving at the first dark bar
Look back at Figure 11-8. There, light traveling from the top of the slit, Point 1, 
arrives at the screen exactly out of phase by one-half wavelength from light 
traveling from Point 2. That means that the light from Points 1 and 2 cancel 
each other out on the screen, interfering with each other destructively. (See 
the earlier section “Going dark: Out of phase with destructive interference” for 
the basics on destructive interference.)

In fact, every ray of light from the top of the slit is canceled out by a ray of 
light from the bottom half of the slit, which arrives exactly one-half wave-
length out of phase — so you get the first dark bar in the diffraction pattern.

Think of the slit in Figure 11-8 in two equal sections. Consider the wave from 
Points 1 and 2. You get destructive interference between these two waves if they 
have a path-length difference of half a wavelength. The shaded right triangle 
shows that the path-length difference between these two waves is then given by
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Then the waves from every point between 1 and 2 destructively interfere with 
the wave from the corresponding point between 2 and 3. So you can write the 
angle of the first dark band as

 Most of the light passing through the slit falls in the central bright region, 
between the first dark bars. Notice that the width of this region is inversely 
proportional to the width of the slit — the narrower the slit, the greater the 
angle over which this light is spread. Because the angle depends on the ratio 
of wavelength to the width of the slit, the diffraction pattern becomes notice-
able only when the width of the slit is not too much greater than the wave-
length of the light (so that λ/W is not too tiny). The wavelength of light is quite 
small by everyday standards, which explains why you don’t normally notice 
this effect and most people think of light traveling in straight lines. (But check 
out the nearby sidebar “Street smarts: A light interference experiment” for a 
really cool way you can actually see this interference pattern.)

Getting to the second dark bar and beyond
Take a look at the situation in Figure 11-9, where you have light passing 
through a single slit and you’re creating the second dark bar in the diffrac-
tion pattern. Light rays from Point 1 are canceled by light rays from Point 2, 
which arrive at the screen exactly one-half wavelength out of phase. Light 
from Point 3 is canceled by light from Point 4, and so on.

Street smarts: A light interference experiment
You can make destructive interference happen 
very easily now that you know what to look for. 
Here’s how: Wait till nighttime, and find your-
self a distant streetlight. Then put your finger 
and thumb together to make a very small gap 
between them. Carefully look at the streetlight 
through this gap. With some very careful adjust-
ments and a steady hand, you’ll be able to see 
the interference pattern. Your finger and thumb 
make the slit, and your eye acts like the screen.

If you’re really careful, you can even adjust the 
width of the gap between your finger and thumb 
and watch the width of the central peak grow 
as you make the gap smaller. I hope you try it — 
seeing this can be a little tricky, but you can do 
it if you have a steady hand.
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Here, you can see the relation that connects W, λ, and θ from the triangle 
whose two short sides are W and 2λ. If you look at the shaded triangle 
between Points 1 and 2, then you have destructive interference if the path-
length difference is given by

This applies to any point and the corresponding point W/4 down from it. So 
then you can say that the angle of the second dark band is given by

 You can progress to higher-order dark bars as well, and you end up with this 
equation, which gives you the angle at which dark bars appear on the screen:
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So there you have it — now if you know the width of a single slit, you can 
figure out where the dark bars will appear in the diffraction pattern. And 
because the central bright bar is straddled by first-order dark bars, you can 
figure out the width of the central bright bar as well.

Doing diffraction calculations
Say that you have a single slit width, W = 5.0 × 10–6 meters, and it’s L = 0.5 meters 
away from a screen. You shine blue light (λ = 469 nanometers) on the single slit. 
What is the width of the central bright bar in the diffraction pattern?

The central bright bar is straddled by first-order dark bars, so if the distance 
to the first dark bar is y, then the width of the central bright bar is 2y. So all 
you need to find is the distance to the first dark bar, and you can use the fol-
lowing equation for that:

For the first dark bar, m =1. A nanometer is a billionth of a meter, so 469 nano-
meters = 4.69 × 10–7 meters. So here’s what you have for the first dark bar:

Taking the inverse sine gives you the angle:

θ = sin–1(0.094) ≈ 5.4°

So that’s the angle at which the first dark bar appears. You still need to find 
y, the distance of the first dark bar from the center of the diffraction pattern. 
Because the distance to the screen is L, you have the following equation:

which you can rearrange like this:

y = L tan θ

Because L = 0.50 meters, you have

y = (0.50 m) tan 5.4° ≈ 0.047 m
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Okay, so the first dark bar appears at 0.047 meters, or 4.7 centimeters, from 
the center of the diffraction pattern. You need to find 2y to get the width of 
the central bright bar, so multiply by 2 to get

2y = 2 (4.7 cm) = 9.4 cm

So in this case, the central bright bar is 9.4 centimeters wide. Cool.

Multiple Slits: Taking It to the Limit 
with Diffraction Gratings

A diffraction grating has many slits — hundreds, thousands of slits. You’re far 
beyond double slits now. A diffraction grating has so many slits that they’re 
measured in slits per centimeter — and 40,000 slits per centimeter is not 
unusual for a diffraction grating. That’s a lot of slits.

 Diffraction gratings are frequently made from plates of glass or something 
equally transparent and are incised with a diamond-tipped, machine-controlled 
scribe. The scribe draws lines to the tune of 40,000 per centimeter. The slits 
are the clear places between the lines.

A diffraction grating works in the same way as single slits and double slits — 
through interference. Each slit acts as a coherent source of light. In this sec-
tion, you see how diffraction gratings work and how physicists use them to 
separate colors.

Separating colors with diffraction gratings
Diffraction gratings are great for determining exactly which wavelength of 
light you’re dealing with. When you have a single slit or double slit, the bright 
bars you get on the screen are pretty broad, making accurate measurements 
of the angle (and hence, the wavelength) difficult. If you’re trying to find the 
exact center of a bright bar that’s 4.0 centimeters in width, there’s a lot of 
room for error.

Diffraction gratings are different, however. You end up with very sharp, very 
narrow bright bars, which are called maxima (plural of maximum) in diffraction-
grating speak. The bright bars from a single slit are wide, those from a double slit 
are a little less wide, and the bright bars from a diffraction grating are razor thin.

17_538067-ch11.indd   24117_538067-ch11.indd   241 6/1/10   10:16 PM6/1/10   10:16 PM



242 Part III: Catching On to Waves: The Sound and Light Kinds 

Besides the main bright bars in the pattern generated by a diffraction grating, 
you also have some other, secondary bars due to the diffraction of light pass-
ing through each of the single slits. But although the secondary bright bars 
are significant when you have a double-slit setup, they’re almost invisible 
when you’re using a diffraction grating. All you see are the principal maxima.

 To get a maximum in the diffraction grating pattern, light from the top slit travels 
from that slit to the screen. Light from the next slit down must travel that same 
distance plus one wavelength. Light from the next slit down must travel the 
same distance as from the top slit to the spot on screen, plus two wavelengths, 
and so on. When light travels a distance that’s one wavelength longer than the 
path from the slit directly above it, you have constructive interference — that is, 
a maximum — at that spot.

By analogy with what I show you earlier for single and double slits in the 
sections “Splitting light with double slits” and “Single-Slit Diffraction: Getting 
Interference from Wavelets,” you get the following relation for maxima in dif-
fraction grating patterns:

where d is the distance between the slits in the grating and θ is the angle 
from the center of the diffraction grating to the spot on the screen you’re 
looking at. Looking at this relation, you can see that you have a central 
maximum (m = 0), another maximum right next to it (m = 1), and then other 
maxima (m = 2, 3, and so on).

Trying some diffraction-grating 
calculations
Say that you have a diffraction grating with 10,000 slits per centimeter and that 
you send a mixture of light through it, half violet light (θ = 410 nanometers) and 
half red light (θ = 660 nanometers). Try showing that the diffraction grating breaks 
down the light so that the two components, red and violet, are clearly separated.

To solve this problem, you can find the first-order maximum for each color 
of light, red and violet, and show that their angles vary significantly. For the 
first-order maxima, m = 1 in this relation:

So if m = 1, you have
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What’s the angle for the first-order maximum? Taking the inverse sine gives you

So when the diffraction grating has 10,000 slits per centimeter, that means 
that the distance between each slit is

For violet light, you have the following (410 nm = 4.1 × 10–5 cm):

And taking the inverse sine of this gives you

For red light, you have the following (660 nm = 6.6 × 10–5 cm):

And taking the inverse sine of this gives you

So the first principal maximum from violet light is at about 24°, and the first prin-
cipal maximum from red light is at about 41° — that’s a very wide separation in 
angle, so you can tell quite clearly the makeup of the light you’re studying.

Seeing Clearly: Resolving Power 
and Diffraction from a Hole

Here’s an interesting point: Light traveling through the lens of a camera 
treats that lens much as it would a single slit, only in circular form, which 
means you end up with a single-slit diffraction pattern on the film — that is, 
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the image appears a little blurry because of single-slit diffraction (see the 
earlier section “Single-Slit Diffraction: Getting Interference from Wavelets” for 
details on diffraction).

In Figure 11-10, light from two objects is passing through a circular aperture 
(much like a lens) and falling on a screen. So how small can you make the 
circular aperture and still be able to distinguish between the two objects on 
the screen? In other words, how small can you make the hole and still see the 
images of the two objects as separate? This value is known as the resolving 
power of a circular aperture.

 The rule is that you’re just about at the limit of resolving power for two 
objects when the first dark bar from one image overlaps the central bright bar 
of the second image, as Figure 11-10 illustrates.

 

Figure 11-10: 
Resolving 

power, 
where an 

image’s first 
dark bar 
overlaps 
another 
image’s 
central 

bright bar.
 

θ

Object 1 Object 2

If the first dark bar of one image overlaps the central bright bar of the other 
image, doesn’t that dim the bright bar? No, not at all. Keep in mind that a dark 
bar in a diffraction pattern doesn’t mean a shadow or anything like that — it 
just means that no light comes from the corresponding source at that point. 
So when the first image’s dark bar overlaps a bright bar, it just means that no 
light from the first image falls there.

 When the first dark bar of one image overlaps the central bright bar of the 
other image, the angle between the light rays from the two objects turns out 
to be the following:
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where θ is the angle (which represents the minimum angle between two 
objects such that you can still distinguish them), λ is the wavelength of the 
light, and D is the diameter of the aperture. So for a particular diameter of cir-
cular aperture and a particular wavelength, θ is the minimum angular separa-
tion between two objects such that you can still see them as distinct.

For example, if two objects are 100 meters away from you, how far apart must 
they be from each other so that you can still tell them apart? For this example, 
work with green light, which is the exact center of the visible spectrum, 
λair = 555 nanometers. The pupil of your eye is about 3.0 millimeters.

So are you ready to use the resolving-power equation? Not quite, because 
although you know the wavelength of light you’re working with in air, you 
don’t know the wavelength of that light where it counts — in the eye. To 
figure that out, use the equation derived earlier in “Doing some thin-film 
interference calculations”:

where λeye is the wavelength of the light in the eye. The index of refraction 
of the clear medium in the eye turns out to be pretty close to water — 1.36 
(compared to 1.33 for water). So plugging in the numbers, you get the follow-
ing wavelength:

Now you’re ready to find the resolving power. Note that for small angles, 
sin θ = θ if you measure θ in radians, so you have the following equation for 
resolving power:

The eye’s pupil is 3.0 millimeters, or 3.0 × 106 nanometers. Plugging in the 
numbers gives you the answer:

So you can resolve (theoretically) an angle of 1.7 × 10–4 radians. If you’re 100 
meters from the objects, what does that work out to be in terms of distance? 
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With such a small angle, the distance the angle translates to is just the angle 
(in radians) multiplied by how far away you are, so you have the following:

(1.7 × 10–4)(100 m) = 1.7 × 10–2 m

So from 100 meters away, you can (theoretically) resolve two objects as dis-
tinct if they’re at least 1.7 centimeters apart.
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Modern Physics
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In this part . . .

This part covers exciting topics you may have been 
waiting for: special relativity (that is, Einstein’s ideas 

about what happens near light speed), radioactivity, 
quantum physics, and matter waves. You see everything 
from the spectrum of hydrogen to the famous E = mc2 
equation.
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Chapter 12

Heeding What Einstein Said: 
Special Relativity

In This Chapter
▶ Understanding reference frames and the assumptions of special relativity

▶ Looking at what special relativity predicts about time, length, and momentum

▶ Relating mass and energy with E = mc2

▶ Adding speeds near the speed of light

Welcome to special relativity, the topic that made Albert Einstein 
famous. In this chapter, you get a handle on the strange but true 

facts of special relativity, where few things are as they seem. You see how 
frames of reference make certain values vary, depending on who’s doing the 
measuring, and you look at what happens at speeds approaching the speed 
of light. Time slows, lengths contract, and mass can be converted into energy 
(E = mc2 — you knew that was coming up in this book, didn’t you?). You 
shouldn’t worry if the results of this chapter seem strange to you — in fact, 
if you can appreciate how strange they are, then you’re well on your way.

Special relativity gives you lots of weird and wonderful results. One thing, 
however, always seems to disappoint: the fact that the speed of light is the 
ultimate speed. Yep, it’s true until proven otherwise. So if you’re looking for 
true faster-than-light travel, sorry — you won’t find it in special relativity. 
(I can sympathize with the letdown; I’m a Star Trek fan.)

However, discussions of relativity still leave plenty of room for imagina-
tion. Never mind that space shuttles fall far short of the speed of light or 
that you’re lucky if anything traveling that fast registers as a blur. For these 
examples, you can ignore the limits of technology and the human body and 
pretend that you’re working with a really great crew with really great gear, 
so the only elements at play are the principles of physics. So yes, you can 
see exactly what’s going on in that fast, transparent rocket ship from where 
you’re standing. Ready? All systems go.
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Blasting Off with Relativity Basics
So what was special relativity created to deal with, and what makes it so 
special? Newton’s laws of motion work fine for the speeds you experience in 
everyday life, but you need a new way to describe anything traveling near the 
upper limit of speed: the speed of light in a vacuum. That’s where Einstein’s 
theory of special relativity steps in.

In this section, you first explore what’s special about this theory, what’s rela-
tive, and what those ideas have to do with frames of reference. Then you look 
at two postulates on which Einstein based this theory. These postulates are 
simply assumptions from which the rest of the theory follows. They’re both 
based on the results of precise experiments. One postulate is not surpris-
ing at all, but the other is a little bit odd, and in combination with the first, 
it meant physicists had to change their precious old ideas about the very 
nature of space and time.

Start from where you’re standing: 
Understanding reference frames
Special relativity is a theory that predicts how events are measured with 
respect to various observers who can be in motion with respect to the event. 
An event is just a physical happening, such as the explosion of a firecracker 
or the ticking of a clock or a train’s passing a certain point. Events happen at 
a particular place and time, as measured by the people who observe them. 
Those people can be moving with respect to the event, or they can be sta-
tionary with respect to the event.

For example, in Figure 12-1, a firecracker goes off, causing a flash of light. 
That’s an event, and two observers watch it. One observer is stationary with 
respect to the firecracker, and the other observer is moving in a rocket — in 
a straight line at a constant speed — with respect to the firecracker. (Rockets 
figure a lot in discussions of special relativity.)

Each observer carries his or her own coordinate system, as the figure shows, 
and the observers each measure the event — its location and time — with 
respect to their individual coordinate systems and clocks. So each observer 
gets his or her own x, y, and z coordinates for the event and his or her own 
time, t. Special relativity is all about relating the measurements that the two 
observers make.
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 The coordinate systems and clocks that the observers carry with them are 
called their reference frames, or their frames of reference. All measurements 
an observer makes are with respect to his or her reference frame — and each 
observer is at rest with respect to the coordinates in the reference frame.

 So why is it “special” relativity? Each observer’s reference frame is a special 
type of reference frame — an inertial reference frame. An inertial reference 
frame is just one that’s not accelerating. That is, Newton’s law about how 
objects in motion tend to stay in motion and objects at rest tend to stay at rest 
holds in inertial reference frames.

Not all reference frames are inertial. For example, a reference frame that’s 
rotating isn’t inertial, because it’s accelerating. Life in a noninertial reference 
frame may sound pretty surprising — perhaps you could put an object on the 
ground and then watch it suddenly start to drift away for no apparent reason, 
because your reference frame would be accelerating.

 Technically, standing on the surface of the Earth does not put you into an 
inertial reference frame, because the Earth has gravity, so the whole reference 
frame is undergoing acceleration due to gravity. And of course, the Earth is 
spinning, so there’s centripetal acceleration, and it’s wobbling, so there’s wob-
bling acceleration, and it’s going around the sun, and so on. But for the sake of 
simplicity, you can ignore all those effects in this chapter and treat observers 
standing on the ground as being in their own reference frames, temporarily 
ignoring the force of gravity and so on.
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Looking at special relativity’s postulates
 When Einstein came up with the theory of special relativity, he started with 

two postulates, or assumptions, that the theory rests on. The postulates 
are these:

 ✓ The relativity postulate: The laws of physics are the same in all inertial 
reference frames.

 ✓ The speed of light postulate: The speed of light in a vacuum, c, always 
has the same value in any inertial reference frame, no matter how fast 
the observer and the light source are moving with respect to each other.

In this section, I discuss the significance of both concepts.

The relativity postulate
 The relativity postulate tells you that one inertial reference frame is as good as 

another, and you can’t tell them apart with experiment. For example, if you’re 
in one inertial reference frame and someone else is in another, you can’t tell 
those frames apart through tests. So if you’re in the rocket back in Figure 12-1, 
it’s just as valid to say that the Earth is moving toward you as it is to stand on 
the Earth and say that rocket is moving toward you. That’s what relativity is 
all about.

This also means that there’s no “absolute reference frame” where objects are 
at “absolute rest.” All that matters is the relative motion of reference frames.

General relativity: Bending the 
theory to include gravity

In special relativity, if a body is moving without 
an external force, then it’ll continue to move in 
a straight line at constant speed — this is iner-
tial motion. Anything undergoing inertial motion 
follows a straight line in an inertial frame. You 
may like to think of a ball rolling on a pool table 
(if you forget about friction); the ball rolls along 
in a straight line at constant speed.

Einstein made an astonishing extension to the 
theory of special relativity to account for gravity: 
general relativity. In this theory, inertial motion 

can undergo acceleration if a gravitational field 
is around. You may think that the force of grav-
ity counts as an external force, but it doesn’t. 
Gravity is actually a curve in space and time 
that makes inertial motions accelerate. Think of 
the pool ball again, but instead of a flat table, 
there’s a curve in it, like a very shallow basin. 
Now the path of the ball isn’t a straight line 
anymore — this is like inertial motion in a gravi-
tational field.

19_538067-ch12.indd   25219_538067-ch12.indd   252 6/1/10   10:18 PM6/1/10   10:18 PM



253 Chapter 12: Heeding What Einstein Said: Special Relativity

The speed of light postulate
 The speed of light postulate says that the speed of light in a vacuum, c, is 

always c — even if that light comes from an inertial reference frame that’s 
moving toward you at half the speed of light.

Although the relativity postulate (which says that the laws of physics are the 
same in all inertial reference frames) isn’t hard to swallow, the speed of light 
postulate is harder to accept. After all, if you’re in one car going 5 meters per 
second and are approached by another going 10 meters per second, you’re 
moving at 15 meters per second with respect to the other car. So if you’re 
standing by the side of a road and a car approaches you at 10 meters per 
second with its headlights on, wouldn’t you measure the speed of light from 
the headlights as c + 10 meters per second?

That’s not how it works with the speed of light, however, or with speeds 
approaching the speed of light. As the postulate says, the speed of light from 
the headlights of the car coming toward you would be c, not c + 10 meters 
per second. This is an extraordinary result, and experiment has verified it 
over and over.

To come up with relativity, Einstein used James Clerk Maxwell’s equations 
for electromagnetic waves, which predict that the speed of light in a vacuum 
is a constant given by

where μo and ε0 are the permeability and permittivity of space (see 
Chapter 8). Einstein was the first to take this equation for what it means — 
that any observer will measure this constant value for the speed of light.

However, even though the speed of light is constant, you can have a shift in 
the frequency and wavelength of light from moving sources — for details, see 
the later sidebar “Red light, blue light: Shifting light frequencies.”

Seeing Special Relativity at Work
To understand special relativity, you have to change the way you think 
about space and time. For instance, the length of time between two events 
depends on the observer (and not just because some people are in differ-
ent time zones or have slow reflexes or faulty watches). You may think this 
bizarre. If you ask someone what time it is, isn’t there only one right answer? 
Nope! The distance between two events also depends on the observer, which 
is just as strange but true.

19_538067-ch12.indd   25319_538067-ch12.indd   253 6/1/10   10:18 PM6/1/10   10:18 PM



254 Part IV: Modern Physics 

In this section, you explore time dilation and length contraction. You also 
start to look at how all this affects Newtonian mechanics by asking about the 
momentum of a particle in relativity. Of course, these ideas become apparent 
only at very high speeds — nearing the speed of light. If humans had evolved 
to be able to walk at nearly the speed of light, or if the speed of light was 
much slower, then special relativity would already make sense to you.

Slowing time: Chilling out 
with time dilation
Say you’re just standing around on the surface of the Earth, and a rocket 
passes by overhead at great speed. You’re in touch with the people on the 
rocket, whom you’ve instructed to read off seconds from a clock as they pass 
you. When they read off the seconds, however, you notice that somehow, 
their seconds are longer than your seconds. What’s going on? Time dilation.

 Time dilation is the phenomenon predicted by the theory of special relativity 
that says time in two inertial reference frames moving with respect to each 
other will appear to be different. In particular, the time intervals on a speeding 
rocket will appear to be longer to you than to the people on the ship.

Understanding why and how time varies
How does time dilation happen? To get the story, say that time is measured 
on a speeding rocket with a “light clock,” as Figure 12-2 shows, so that every 
tick of the clock has a light ray traveling from one mirror to another and then 
back again.

 

Figure 12-2: 
A light 
clock.

 

Mirror

Light

Mirror

Now take a look at the situation from the point of view of an observer on the 
rocket, at the top of Figure 12-3, and from your point of view on Earth, at the 
bottom of Figure 12-3. To the observer in the rocket, light is just bouncing 
between the mirrors, a distance D, and each tick of the clock takes 2D/c seconds 
(the time for light to make it from one mirror to the other and back again). So 
for the observer on the rocket, call the time interval between ticks Δto.
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 The time interval measured from a reference frame at rest with respect to the 
event, Δto, has a special name: the proper time interval. So when the clock is on 
the rocket, the time between ticks is a proper time interval (the event is in the 
same reference frame as the measurement is made in).

But things are different from your point of view on Earth. Although the light 
ray is traveling the distance D between the mirrors, the rocket is moving 
forward a distance L, as you can see in the bottom of Figure 12-3. So the light 
ray has to travel a longer distance, s (where s = [D2 + L2]1/2) — not just D), to 
strike the other mirror. And the light takes longer to make that longer trip, so 
the time you measure, Δt, is longer than the time measured on the rocket, Δto. 
In other words, distance equals speed times time, so if light speed remains 
constant, then time has to increase to give you a greater distance.

 

Figure 12-3: 
Time 

measured 
by two 

observers.
 

DLight

Observer

s
D s

L L

Look at this with a little math to relate Δto (the time on the rocket) and Δt (the 
time you measure). Start with the distance you observe the light to travel 
from one mirror to the other and back again, 2s. Note that

2s = 2(D2 + L2)1/2

Now you need to get some time into this equation. Note that the distance L 
is just the distance the rocket goes in the time you measure, Δt multiplied by 
the speed of the rocket from your point of view, which you call v, divided by 2. 
So L = vΔt/2, which means you can write the following:
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Now you need to get clever. Note that the distance 2s is the distance light 
travels in the time interval Δt — that is, cΔt. So this becomes

Squaring and solving for Δt gives you the change in time:

But hang on a minute — 2D/c is the time the observer on the rocket measures 
for each tick of the light clock:

So replace 2D/c to finally get

Here’s a list of the variables to help you keep things straight:

 ✓ Δt: The time measured by an observer who is in motion with respect to 
the event being measured

 ✓ Δt
o
: The time measured by an observer at rest with respect to the event 

being measured

 ✓ v: The relative speed of the two observers

 ✓ c: The speed of light in a vacuum

 Time dilation is not just for light clocks — it means that time itself slows 
down. So the time measured by any clock in the rest frame is dilated when 
viewed by an observer who is moving.

Notice that when v is very much less than c (v << c), the time-dilation equa-
tion becomes
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In other words, at low speeds, time dilation is not noticeable (which is 
why most physicists before Einstein had nothing to say about it). But as v 
approaches c, Δt becomes much larger than Δto.

Doing time-dilation calculations
Say that the rocket is moving at 0.95 times the speed of light, or 0.95c. Then 
suppose a clock on the rocket measures 1.0 seconds between successive 
ticks. How long is the time between ticks, measured in your reference frame? 
The time-dilation equation comes to the rescue here:

In this case, Δto is 1.0 seconds (recall that Δto is the time measured in the 
same reference frame as the event being measured), so

And v = 0.95c. After you square the velocity, the c2 terms cancel out in the 
denominator, so you have the following:

So on the ground, you measure the rocket’s clock as taking 3.2 seconds 
between ticks, not 1 second. Pretty cool.

Note that the time dilation is noticeable because the relative speeds of the 
observers is so great: 0.95c. What if instead of a rocket, the clock had been on 
a jet? Suppose the relative speed is only about 550 miles per hour, or about 
(8.2 × 10–7)c. In that case, you’d have this time dilation:

In other words, you’d have to wait about 100,000 years before the time dila-
tion between you and a clock on the jet amounted to 1 second. That’s a long 
time to keep your stopwatch going.
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This all has some consequences for space travel. Given the great distances 
between stars, you may think you have no hope of reaching the stars, even 
if your rocket were going 0.99c. But thanks to time dilation, time on board the 
rocket would pass much more slowly than an observer on Earth would measure.

Say, for example, that you have your heart set on visiting a star 10 light-years 
from Earth (a light-year is the distance light travels in one year, so it’s c times the 
number of years). At 0.99c, an external observer would say the trip would take

Red light, blue light: Shifting light frequencies
Because of the Doppler effect (see Chapter 
7), the pitch of sound waves depends on the 
motion of the source and the listener through 
the air. For instance, the siren on a police car 
sounds higher pitched as the car races toward 
you and lower pitched as it speeds away.

Although light is traveling in a vacuum, you 
still get a change in frequency. Imagine that 
a spaceship is traveling very quickly with its 
headlights on. As the ship travels toward you, 
you see a higher frequency and shorter wave-
length (this is sometimes called a blueshift). If 
the ship travels away from you, then you see a 
lower frequency and longer wavelength (this is 
sometimes called a redshift).

The idea of time dilation can help you under-
stand how this works. For the people on the 
spaceship, traveling at speed u, the light has 
a frequency f0 and therefore a period T0 = 1/f0. 
What frequency of light do you see? Call the 
frequency and period of the light you see f and 
T (which equals 1/f). As you see it, a peak of 
the light wave leaves the ship and travels a dis-
tance of cT in one cycle. In this time, you see 
the spaceship move a distance uT before emit-
ting the next peak. So you see a wavelength 
of (c – u)T. Of course, like everyone else, you 
observe the light moving at speed c. Because 

you know the relationship between wavelength 
speed and frequency (c = λf), you can write the 
frequency that you observe as

  

This is just the result you’d have with the 
Doppler effect for sound, but this time you have 
a difference: time dilation. You know that the 
period of the light you observe, T, is the time-
dilated version of the proper time period T0, 
which equals 1/f0. So you can write

  

Then if you do a little algebra to simplify, this 
becomes

  

So you see that as the ship travels toward you, 
the top of the fraction is larger than the bottom, 
which gives you a larger frequency. The light 
may appear blue because it’s shifted toward 
the violet/blue end of the visible light spectrum. 
If the ship travels away, you see a smaller fre-
quency, making the light look red.
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So you may think it’d take you 10.1 years to reach the star. But on the rocket, 
where the event is your aging from second to second, time passes much 
more slowly. In particular, if

then

So the time that passes aboard the rocket would be

Δto = 10.1(1 – 0.9902)1/2 ≈ 1.4 years

So although it looks to an observer on Earth that the trip would take 10.1 years, 
to you on the rocket, only 1.4 years would pass. Isn’t physics wonderful? So 
you don’t have to be too disappointed that you can’t travel faster than light. If 
you get very close to c, then you can travel many light years in just a short time.

Packing it in: Length contraction
As if time dilation wasn’t enough, special relativity also tells you that lengths 
get contracted at high speeds, an outcome of the finite speed of light. So although 
you may think that reaching stars is now possible due to time dilation, you’ll 
have to put up with being only 2 inches wide. Just kidding — to you on the rocket, 
lengths would appear to be normal. But observers measuring the same events that 
you do (events happening in your rocket) would see length being contracted.

Looking at why and how lengths contract
Suppose you want to examine the length of a spaceship moving at the speed 
of light. You expect that the people on the ship and people observing from 
Earth will disagree about the spaceship’s length, but you know that they must 
agree on the speed of light.

Length equals speed times time, so you can figure out the spaceship’s length 
by first measuring the time that it takes a ray of light to cover a distance; 
then using the time-dilation equation (see the preceding section), you can 
find the lengths that each observer sees.
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The time-dilation equation involves the time between events that happen at 
the same place in the rest frame (Δt

0
), so here’s how you set up the measure-

ment: You plan to send a ray of light from the rear of the spaceship, reflect it 
from the front, and let it return to the same place. For the people on the ship, 
this takes a time

because the light ray travels a distance equal to twice the length of the ship 
as measured on it, L

0
.

What time does an observer on Earth measure for this path of the light ray? 
You already expect that he’ll observe the ship to be of a length L, which may 
be different from L

0
. But he also sees the ship moving with speed v, so as 

the light ray travels from the rear of the ship to the front, the ship will have 
moved; therefore, the ray has to travel a distance slightly longer than L. On 
the return journey, the light ray has to travel a distance slightly shorter than 
L because of the movement of the ship. When you work out how much time 
this whole path would take a light ray at speed c, you get the following:

Now you can use the time-dilation equation to relate L and L
0
. Here’s how 

times are related by the time-dilation equation:

So if you plug the values of Δt and Δt0 for the light-ray path into this equation, 
you get

Then rearrange the equation to get the equation for length contraction:
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Cool — that relates the lengths measured by the two observers. Here’s what 
all the variables stand for:

 ✓ L: The length measured by an observer who is in motion with respect to 
the distance being measured

 ✓ L
o
: The length measured by an observer at rest with respect to the 

distance being measured

 ✓ v: The relative speed of the two observers

 ✓ c: The speed of light in a vacuum

Notice that the factor (1 – v2/c2)1/2 is always less than 1 (because objects can 
never actually reach the speed of light, although they can come very close). 
That means that the Earth observer sees a length measured on the rocket 
contract. So even if the rocket is 100 meters long, the Earth observer may see 
it as only 10 meters long, depending on the relative speed of the two observers.

 Length contraction happens only along the direction of travel. Distances 
perpendicular to the direction of travel are not affected. In other words, if the 
rocket is 100 meters long and 20 meters wide as measured by an observer on 
the rocket and it’s going so fast past the Earth that an observer on the Earth 
measures it as being only 10 meters long, the Earth observer would still see 
the rocket as being 20 meters wide. (The Earth observer would, no doubt, 
think it’s a pretty funny-looking rocket.)

Trying some length-contraction calculations
Say that the relative speed between the rocket ship and Earth is 0.99c. The 
observers on the rocket and the Earth have noticed that they aren’t agree-
ing on lengths of items on the rocket ship. So the rocket observer holds up 
a meter stick (its length being in the direction of the rocket’s travel away 
from Earth) and asks the Earth observer to measure it, expecting the Earth 
observer to report exactly 1.00 m.

You know that length along the direction of relative travel will contract as 
measured by the Earth observer, and you whip out your handy formula:

Here, Lo is the proper length, the length measured by the rocket observer, 
and L is the length measured by the Earth observer, who is in motion with 
respect to the proper length.
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Plugging in the numbers gives you

So you may hear the Earth observer radio the rocket observer and say, “Hey 
buddy — somebody sold you a defective meter stick! That one’s only 14 cen-
timeters long. Here, take a look at mine.”

And the Earth observer holds up a meter stick, also in the direction of travel 
of the rocket. A laugh comes back over the radio, “Hey pal, you’re the one 
with the defective meter stick! That one’s only 14 centimeters long. Don’t 
they teach you anything on Earth?”

In other words, when the Earth observer held up a meter stick, the meter 
stick measured 1.00 meters — on Earth. To the rocket observer, the meter 
stick is in motion (so the Earth measurement is the proper length, Lo, because 
it’s made at rest with respect to the meter stick), and the rocket observer 
sees it with a contracted length.

 Lo is always the proper length — the length measured at rest with respect to 
the thing you’re measuring — and to is the proper time — the time measured 
at rest with respect to whatever you’re timing.

Pow! Gaining momentum 
near the speed of light
As if time dilation and length contraction weren’t enough, special relativity 
also affects momentum. From Physics I, you find out that momentum is mass 
multiplied by velocity, and its symbol is p:

p = mv

When you roll a pool ball around or throw a baseball, it has momentum — 
it’s the oof! factor that makes moving things hard to stop. (Note that momen-
tum is a vector, of course, but I talk only in terms of its magnitude here.)

Special relativity has something to say about momentum. In particular, spe-
cial relativity gets its (1 – v2/c2)1/2 factor into the momentum mix like this:
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Here’s how the variables relate:

 ✓ m: The mass of the moving object

 ✓ v: The speed of the object that you measure

 ✓ c: The speed of light in a vacuum

 ✓ p: The object’s momentum

Note that because (1 – v2/c2)1/2 is always less than 1, the relativistic momen-
tum is always greater than the classical momentum (mv), but the difference 
isn’t noticeable at slower speeds. So you can safely assume that the momen-
tum and the relativistic momentum of a pool ball speeding across the table to 
a pocket are about the same.

The difference starts becoming noticeable at higher speeds, of course. About 
the highest speeds that humans have been able to give to objects with mass 
are those reached in particle accelerators, which are those rings or linear 
tracks that physicists use to get particles like electrons moving at relativistic 
speeds.

The speeds of electrons in those accelerators is very fast, pretty close to the 
speed of light. How close? At the Stanford Linear Accelerator Center (SLAC) 
in California, electrons are routinely goosed to speeds of 0.9999999997c. That 
fast enough for you? Physicists can get pretty speedy when they want to.

Classically, such electrons should only have a momentum of

 p = mv

 = (9.11 × 10–31 kg)(0.9999999997c)

 = 2.7 × 10–22 kg-m/s

But Einstein tells you that the electrons’ momentum is really

Note that you may not be able to put all the digits of the electrons’ speed 
on your calculator, but if you look at Figure 12-4, you can see that the extra 
factor that appears in relativistic momentum becomes larger and larger as 
the speed approaches the speed of light.
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Figure 12-4: 
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So although still tiny, the electrons’ momentum is a factor of

That is, at relativistic speeds, the electrons’ momentum is 37,000 times what 
the momentum would be if the classical momentum held.

 Note that different inertial reference frames can move at various speeds with 
respect to each other — and that means that momentum is not conserved 
between inertial reference frames. For example, a pool ball traveling slowly on 
the pool table may be seen as traveling very fast by a rocket-based observer — 
which means that the momentum you and the rocket observer measure would 
be different.

Here It Is! Equating Mass 
and Energy with E = mc2

Perhaps the most startling result of special relativity, and the basis of the 
world’s most well-known physics equation, is that mass and energy are 
equivalent. Strictly speaking, that means that when you add energy to an 
object, it’s the same as adding mass.
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So what’s the world’s most famous physics equation? Here it is:

Hmm, perhaps not exactly what you were expecting. That’s the complete 
version of the equation, which includes energy due to the relative motion 
between you and the mass (kinetic energy). You were perhaps expecting this:

Eo = mc2

That’s the same equation, with v = 0 (so you’re at rest with respect to the mass 
involved, which is why it’s Eo, not just E). Eo is called a mass’s rest energy.

In this section, you work with both versions of the formula, noting both rest 
energy and kinetic energy. You also see how to include potential energy in 
the equation.

An object’s rest energy: The energy 
you could get from the mass
An object’s rest energy, Eo, is energy-equivalent of a mass at rest if it were 
converted to pure energy. Einstein’s famous equation tells you that an 
amount of mass m has an equivalent amount of energy E0, given by E0 = mc2.

 Physicists can observe the equivalence of mass and energy in experiments 
where particles called neutral pions disappear. So what happens to the conser-
vation of mass? Well, when the pion disappears, it leaves light, which has an 
energy that’s equivalent to the missing mass (times c2). Energy and mass are 
two sides of the same coin, and together they’re conserved.

In this section, you see how mass can turn into pure energy.

Converting between mass and energy
How could you tell that Eo = mc2 experimentally? Well, you could do it if you 
had two pool balls, one made of matter and the other made of antimatter (the 
opposite of matter, where electrons have positive charge and protons have 
negative charge). If you brought the balls together, they’d flash into pure 
energy (released as light), and the energy released would be the same as 
mass of the two pool balls multiplied by c2.
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In fact, physicists working at particle accelerators convert mass into energy 
and back again every day. You may be interested to know (sci-fi fans take note) 
that physicists are creating antimatter here on Earth every day of the week — in 
tiny amounts. Particle accelerators regularly create positrons — the antimatter 
equivalent of electrons. Positrons have a positive charge but the same mass as a 
normal electron. So here’s how the conversion between mass and energy works:

 ✓ Changing mass to energy: When you bring an electron and a positron 
together, there’s a very, very tiny explosion, and two photons of high 
energy (gamma rays) are created. That’s the conversion of mass into 
pure energy. When you measure the energy of the created photons, sure 
enough, the theory of special relativity is right.

 ✓ Changing energy to mass: Conversely, two gamma rays, colliding head-
on, can do the reverse and end up as an electron and a positron. That’s 
the conversion of pure energy into mass.

The masses of electrons and positrons are miniscule, but if you convert 
larger masses into energy, the amount of energy created can be enormous, 
because all the mass is converted into energy. By contrast, in a nuclear explo-
sion, only about 0.7 percent of the mass involved is converted into energy.

Powering up: Finding the energy in a jar of baby food
Now check out some numbers. Suppose you have a jar of baby food with a 
mass of 46 grams. If you were to convert all the food in the jar into pure energy 
(don’t try this at home!), how long would it keep a 100-watt bulb going?

First, find the energy that’d be released by converting the jar of baby food 
into energy, using the rest-energy equation:

Eo = mc2

Plugging in the numbers gives you

Eo = (0.046 kg)(3.0 × 108 m/s)2 = 4.1 × 1015 J

That’s a lot of joules. How long would it keep a 100-watt bulb burning? Well, 
the time the bulb would keep going is

So that’s

19_538067-ch12.indd   26619_538067-ch12.indd   266 6/1/10   10:18 PM6/1/10   10:18 PM



267 Chapter 12: Heeding What Einstein Said: Special Relativity

And that’s a mere 1.3 million years. Not bad for a little jar of baby food.

Shrinking the sun: Turning mass into light
Of course, you may not convert jars of baby food into pure energy every day. 
Here’s another example — the sun is getting lighter. The sun is losing mass 
every second by converting its mass into energy, which it beams away as 
sunlight. You don’t simply have little hunks of the sun flying into space; the 
light particles, photons, are massless — they’ve become pure energy.

How much mass is the sun losing every second? Well, if the sun 
were a light bulb, it would be a 3.92 × 1026-watt light bulb — that is, a 
392,000,000,000,000,000,000,000,000-watt light bulb. So in 1 second, the sun 
loses this much energy (a watt is 1 joule per second):

ΔEo = 3.92 × 1026 J

And because Eo = mc2, the amount of mass the sun loses is

That’s about the mass of about 47 aircraft carriers, which is a lot of mass to 
burn every second.

An object’s kinetic energy: 
The energy of motion
From the complete version of Einstein’s equation relating mass and energy, 
you know that the total energy of an object in motion is the following:

What’s this total energy made up of? You know that for an object at rest, the 
energy is Eo = mc2. The remainder of the total energy is kinetic energy — 
the energy of motion:

Total energy = rest energy + kinetic energy
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So this means that the kinetic energy of an object is

Kinetic energy = total energy – rest energy

Therefore, the kinetic energy, KE, is equal to

Relating the relativistic formula to one from classical mechanics
The relativistic formula for kinetic energy doesn’t look very much like the old 
familiar nonrelativistic version for the kinetic energy here:

But actually, the relativistic version reduces to the nonrelativistic form when 
v is much less than c (that is, v << c). That’s because at low speeds, v is small, 
and you can expand the factor 1/(1 – v2/c2)1/2 to get the following (this is a 
Taylor expansion):

Because v << c, you can ignore the third and higher terms here, so to a good 
approximation, you can say the following:
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Plug this result into the equation for kinetic energy and simplify to get the 
familiar version of the KE equation from mechanics:

So all the time that you’ve been using this equation for kinetic energy, you’ve 
really been using an approximation to the relativistic equation:

Who knew?

 One consequence of the kinetic-energy equation is the conclusion that objects 
with mass cannot reach the speed of light (sorry). That’s because as you get 
closer and closer to the speed of light, the denominator here approaches zero, 
which makes the kinetic energy approach infinity. And it’d take an infinite amount 
of work to give something an infinite kinetic energy. However, an infinite amount 
of work isn’t available (and imagine your energy bill if it were!), so the conclusion 
is that giving the speed of light to an object that has mass is impossible. The only 
way out is to set m to zero, which makes the kinetic-energy equation meaningless.

Plugging in some numbers to find the KE
Say that you see a rocket of mass 10,000 kilograms passing overhead at 0.99c. 
What are its total energy and kinetic energy? Its total energy is
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By contrast, the kinetic energy equals

Skipping PE
 Einstein’s total-energy equation is just the sum of an object’s rest energy and 

its kinetic energy — it ignores potential energy. If you want to include poten-
tial energy in this equation, you have to add it. For example, if an object has 
potential energy by being at a certain height in the Earth’s gravitational field, 
you can add that potential energy, mgh, to the total-energy equation:

where m is the object’s mass, g is the acceleration due to gravity on the 
Earth’s surface, and h is the height of the object.

 The rest energy of a particle is not a kind of potential energy; it’s the energy 
a massive particle has at rest, just because it has mass. Potential energy 
comes from a particles’ position in a field of any kind — gravitational, electric, 
and so on.

New Math: Adding Velocities 
Near Light Speed

The speed of light postulate (from the earlier section “Looking at special 
relativity’s postulates”) says that the speed of light in a vacuum, c, always 
has the same value in any inertial reference frame, no matter how fast the 
observer and the light source are moving with respect to each other.
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Suppose you have two rockets traveling toward each other, each traveling at 
0.75c as measured by an observer on Earth. Would an observer in one rocket 
see the other rocket approach at a speed of 0.75c + 0.75c? No, because that’s 
1.5c, which isn’t possible.

As you can see, special relativity has to make some provisions for adding 
velocities so you don’t end up with velocities greater than c. This formula 
allows you to find the sum of the speeds, bringing you closer to the limit c 
without passing it.

Take a look at the situation in Figure 12-5. There, a rocket is traveling past an 
observer on Earth at speed vrocket (the observer on Earth sees the same speed 
for the rocket, only in the opposite direction). Now say that the crew in the 
rocket recently did some work on the outside of the rocket, and they sloppily 
left a wrench outside. That wrench is traveling away from the rocket — observers 
on the rocket measure the speed of the wrench as vo.

 

Figure 12-5: 
A rocket 

and wrench 
moving at 

speeds 
nearing c.

 

vrocket

vO measured on rocket

Observer

What does the observer on Earth at the bottom of the figure measure the 
speed of the wrench as? That observer measures the speed of the wrench as 
v, so is the following equation true?

v = vo + vrocket ?

Nope, because you could conceivably get a speed greater than the speed of 
light by just adding two speeds together this way. Instead, Einstein says that 
the speed of the wrench as measured on Earth is
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where

 ✓ v is the speed of the wrench as measured on Earth

 ✓ vo is the speed of the wrench as measured on the rocket

 ✓ vrocket is the speed of the rocket relative to the Earth

Say that the speed of the rocket relative to the Earth is 0.75c, and the speed 
of the wrench with respect to the rocket, as measured on the rocket, is also 
0.75c. Instead of simply adding these two speeds to get 1.5c, you use the rela-
tivistic equation. Putting in the numbers, vo = vrocket = 0.75c, gives you

 The law for adding velocities in relativity was observed even before Einstein 
discovered relativity. In 1851, Hippolyte Fizeau used a Michelson interferom-
eter with flowing water between the mirrors to compare the velocity of light 
in stationary water to the velocity of light in moving water (an interferometer 
separates light beams so researchers can observe interference patterns and 
make conclusions about the light waves — see Chapter 11). The expectation 
was that the velocities of light and the water should simply add up. However, 
the velocities added relativistically. Nobody could explain the result of this 
experiment until Einstein came along and showed how people needed to 
rethink their most basic ideas of space and time.
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Chapter 13

Understanding Energy and Matter 
as Both Particles and Waves

In This Chapter
▶ Blackbody radiation

▶ The photoelectric effect

▶ Compton scattering

▶ The de Broglie wavelength of matter

▶ The Heisenberg uncertainty principle

What is matter? That’s a question that physicists have long been asking. 
And they’ve come up with some surprising answers. Everybody 

knows what electrons and protons are, right? They’re tiny particles that 
orbit around each other to form atoms, and they’re the fundamental build-
ing blocks of matter. But it turns out that the particle nature of electrons and 
protons and all matter isn’t quite right: Such particles can also act like waves. 
That sort of challenges the imagination — how can a baseball act as anything 
other than an object? How can matter act as a wave, a traveling disturbance 
that transfers energy? That’s the kind of question you look at in this chapter.

On the other hand, physicists have also been asking questions about light, 
which is known for its wave qualities. Chapter 11 covers how light works as 
a wave — for instance, how light passing through a pair of slits can interfere 
with itself and cause constructive and destructive interference. But light can 
show particle-like qualities, too — you’ve heard of photons, which are par-
ticles of light. So what is light? Waves or particles? The answer to that ques-
tion is both: Light exhibits both particle and wave qualities, depending on 
what you’re measuring.

In this chapter, you look at the particle nature of light, the wave nature of 
electrons, and the experiments that suggested the relationships between 
energy and matter. All this ties in nicely with Einstein’s idea that mass and 
energy are equivalent, E = mc2, which I cover in Chapter 12. The result is a 
more complete picture of waves, particles, energy, and momentum. I start 
this chapter — as physicists started historically — by talking about the par-
ticle nature of light.

20_538067-ch13.indd   27320_538067-ch13.indd   273 6/1/10   10:19 PM6/1/10   10:19 PM



274 Part IV: Modern Physics 

Blackbody Radiation: Discovering 
the Particle Nature of Light

The first experiment that showed how light could act like particles had to do 
with explaining the radiation spectrum of light that every object emits.

Blackbody radiation is the radiation from an ideal surface, which absorbs any 
wavelength of radiation incident upon it. Physicists studied blackbody radia-
tion extensively by experiment and knew much about it by 1900, but little 
was understood until some quite revolutionary changes in physics. Not only 
did the problem of blackbody radiation suggest the particle nature of light, 
but it also led to the field of quantum physics. In this section, I explain the 
experimental results that hinted that light is more than just a wave.

Understanding the trouble 
with blackbody radiation
A glowing piece of charcoal, temperature about 1,000 kelvin, emits a cherry-
colored light that you can see. And although people, who have a temperature 
of about 310 kelvin, don’t glow in the visible spectrum, they emit infrared 
light, which is visible to night scopes.

Physicists studied the spectrum of that light and found that it varied by the 
temperature of the object in question. Figure 13-1 shows the spectrum of 
emitted light — intensity versus wavelength — from a perfect blackbody 
(intensity is the amount of energy radiated by the wave per unit area per unit 
time, as I explain in Chapter 8). A perfect blackbody is simply an object, any 
object, that emits as much light as falls upon it from its environment.

The thing that puzzled physicists in the early part of the 20th century was 
the shape of the spectrum. As the temperature of the blackbody increased, 
the wavelength of the light emitted with the highest intensity decreased, 
creating a spectrum with the characteristic shape that you see in the figure. 
Physicists advanced plenty of theories as to just how a blackbody worked, 
but each theory was incomplete — at best, it could match only one part of 
the spectrum, at low wavelengths or at high wavelengths. But no one could 
give a satisfactory theoretical model of how blackbodies produced exactly 
the spectrum you see in Figure 13-1.

 One attempt at an explanation of the blackbody spectrum only in terms of 
waves was made by Lord Rayleigh (John William Strutt, third Baron Rayleigh). 
His theory produced a prediction for the blackbody spectrum that fit quite 
well at large wavelengths; however, it had quite a serious problem — it pre-
dicted that a blackbody would radiate with infinite power! The predicted 
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spectrum increased to infinity at shorter and shorter wavelengths. All attempts 
to explain the blackbody spectrum only with waves had similar problems.

 

Figure 13-1: 
The 

spectrum of 
blackbodies.
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Being discrete with Planck’s constant
 Max Planck, a German physicist, came along with a truly radical idea: He said 

that you have to consider the blackbody as a collection of many atomic oscil-
lators, each of which emits radiation. The radical part of Planck’s idea was 
that such atomic-sized oscillators could only emit energies of

E = nhf          n = 0, 1, 2, 3, ....

where n is a positive integer, f is the frequency of the oscillator, and h is a 
constant known as Planck’s constant:

h = 6.626 × 10–34 J ∙ s

That is, each atomic oscillator could only radiate energies that were discrete, 
that were multiples of hf. Other energies were not allowed. Today, when only 
certain energy states are allowed, you say that the system is quantized. That 
was the beginning of quantum physics. (You can find out more about quan-
tum physics in my book Quantum Physics For Dummies [Wiley].)

The fact that energy could be emitted only with certain energies meant that 
not only were the atomic oscillators quantized but the emitted light was, too. 
In other words, light generated by a blackbody exists in discrete quanta, with 
only certain energies allowed. That contradicted the classical picture of light as 
a continuous spectrum of all possible wavelengths. Planck’s result implied the 
 particle-like nature of light, with each particle of light having its own allowed 
energy.
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Light Energy Packets: Advancing 
with the Photoelectric Effect

Albert Einstein was the one who first proposed that light consists of packets 
of energy. He did so as a result of his attempts to explain the so-called 
photoelectric effect, a phenomenon Heinrich Hertz first observed 
accidentally in 1887.

The photoelectric effect is called that because it relies on electrons that are 
ejected from a piece of metal by photons hitting that metal. This section 
describes the effect and how Einstein explained it.

Understanding the mystery 
of the photoelectric effect
An experimental apparatus to measure the photoelectric effect appears in 
Figure 13-2. Here’s how it works: Electrons are normally trapped in the metal, 
attracted by the positive charge of the metal atoms’ nuclei. Even when a volt-
age is applied across the gap in the figure (between the metal sheet and the 
collector), the electrons are bound so tightly to the metal that they don’t 
leave the surface.

But when light shines on the sheet of metal, the light interacts with the atoms 
of metal, exciting them. Under certain circumstances, this light can cause 
electrons to break free from the surface of the metal. When the light gives 
the electrons the energy they need to leave the surface of the metal, they’re 
kicked out.

Those emitted electrons then travel to a positive plate, called the collector, 
as Figure 13-2 shows. The metal plate and collector are in a vacuum (inside 
a glass bell-jar or tube) to minimize the collisions of the electrons with the 
atoms of the air, which would complicate matters. Because the electrons 
travel from one metal plate to another, current flows (although a very small 
current), which can be measured by the meter at the bottom of the figure. 
So when you shine light onto the metal, current flows. It’s as simple as that.

To isolate the effect of the frequency of the incident light, researchers 
decided to shine monochromatic light (light of a particular frequency) on the 
metal plate. They could then study the effects of varying the frequency and 
intensity of this light separately.
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Figure 13-2: 
The pho-

toelectric 
effect.
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Light would fall on the atoms of the metal, and physicists expected that when 
they used enough light waves, electrons would gather enough energy to be 
emitted. So classically, the more intensely the light shone on the metal, the 
more energy the emitted electrons should have. The assumption was that at 
very low levels of light, electrons would need some time to gather enough 
energy to be emitted. But that’s not what happened. Here are two surprising 
findings:

 ✓ The energy of the emitted electrons turned out to be independent of 
the intensity of the light: If researchers doubled the amount of light, the 
electrons they saw didn’t end up with any different energy when they 
were emitted.

 ✓ When researchers shone even low-intensity light on the metal, electrons 
started to be emitted immediately; it didn’t take time for them to gather 
enough energy before being emitted.

Einstein to the rescue: Introducing photons
 Einstein, building on the work published by Max Planck (see the earlier sec-

tion “Being discrete with Planck’s constant”), proposed that light was actually 
made up of discrete energy packets — today, you know those as photons. In 
particular, again following Planck, Einstein said that the energy of each photon 
is equal to

E = hf

where E is the energy of the photon, h is Planck’s constant (6.626 × 10–34 
joule-seconds), and f is the frequency of the photon.
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Einstein’s equation shows that the energy of each photon depends on light 
frequency. For the photoelectric effect, Einstein suggested that each electron 
absorbs one photon, so the energy of the emitted electrons depends on light 
frequency as well. More-intense light contains more photons, so intensity can 
affect the number of electrons emitted but not the energy.

Now that you’re getting into photons, it’s worth asking what their mass is. 
After all, the whole point here is that photons act like particles. So do they 
have mass? From Chapter 11, you know that the energy of something in 
motion is

Calculating photons per second from a light bulb
Consider an electric light bulb of 100 watts. How 
many photons does it emit per second? Can you 
even think in terms of such a question? Yes, you 
certainly can. But you need to know the energy 
that the light emits every second and the energy 
of every photon. Because a light bulb’s spec-
trum more or less covers the visible spectrum, 
assume that the average visible wavelength 
of light from the bulb is green light (λ = 555 
nanometers).

Okay, how much energy does the bulb emit per 
second? That’s 100 watts, which is 100 joules 
per second, right? Not exactly. Incandescent 
lights are only about 2 percent efficient — that 
is, a 100-watt bulb emits only 2 joules of visible 
light per second.

Okay, how many photons are in 2 joules per 
second? To determine that, you have to find 
the energy of each photon. You’re assuming 
the wavelength of the emitted light is green, 
on average λ = 555 nanometers. What’s the 

frequency? You can relate the speed of light (c) 
to its frequency (f) and wavelength (λ) like this:

  

So the frequency of green light is 

  

That means the energy of one photon is

  Ephoton = (6.626 × 10–34 J-s)(5.40 × 1014 Hz) 

 ≈ 3.58 × 10–19 J 

So the number of emitted photons per second is

So a 100-watt bulb emits about 6 × 1018 photons 
per second in the visible spectrum — a huge 
number.

20_538067-ch13.indd   27820_538067-ch13.indd   278 6/1/10   10:19 PM6/1/10   10:19 PM



279 Chapter 13: Understanding Energy and Matter as Both Particles and Waves

So rearrange the equation to isolate the mc2 term:

Now the (1 – v2/c2)1/2 term is zero, because by definition for photons, v = c. 
The energy is not zero, but the product of E times zero is zero, so mc2 = 0 — 
which means that m is zero. So the mass of photons is zero, nothing, nada.

Explaining why electrons’ kinetic energy 
is independent of intensity
So how exactly did Einstein use photons to explain the photoelectric effect? 
He had two issues to explain here: the idea that the kinetic energy of the 
emitted electrons is independent of the light intensity and the fact that elec-
trons are emitted immediately, even in low-intensity light. I discuss kinetic 
energy in this section and the immediate release of electrons in the next.

Classically, you’d expect electrons to be emitted by electromagnetic waves 
with a continuous spectrum — and the more intense the light, the faster the 
ejected electrons should be going. But that’s not what happens. For a particu-
lar frequency of light, the ejected electrons have a particular kinetic energy — 
and even if you shine twice as much light on the metal, you don’t get elec-
trons with more kinetic energy (you do get more electrons, however).

 The particle theory of photons explains the photoelectric effect by saying 
that the energy of each photon — and therefore the energy it can deliver to 
a single electron — is dependent only on its frequency. So instead of having 
electrons absorb energy by being bathed in continuous light, each electron 
absorbs one photon.

That’s why the kinetic energy of the emitted electrons is independent of the 
light intensity: The intensity of the light determines only the number of pho-
tons, not their individual energy. It’s the photon energy that determines the 
kinetic energy of the ejected electrons.

 According to Einstein’s photon model, each photon’s energy goes into

 ✓ The energy needed to pull an electron out of the metal 

 ✓ The kinetic energy of that electron
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The energy needed to pull electrons out of metal is called that metals’ work 
function, or WF, so the energy of each photon, which is hf, is equal to the 
following:

hf = KE + WF

where KE is the kinetic energy of the ejected electron and h is Planck’s con-
stant (6.626 × 10–34 J-s).

This equation for the kinetic energy of the emitted electron tells the whole 
story: The kinetic energy of an emitted electron is just dependent on the fre-
quency of the incoming photons, not their number, and the work function of 
the metal.

Explaining why electrons 
are emitted instantly
To describe the photoelectric effect, the second problem that Einstein had 
to solve was why electrons were emitted instantly when light — even low-
intensity light — was shone on the metal.

Classically, you’d expect light intensity to have to build up enough energy to 
start ejecting electrons. But using Einstein’s energy-packet theory, you don’t 
need to wait until low-intensity light waves build up enough energy to emit 
electrons, because the light is actually made up of energy packets whose 
energy is dependent only on their frequency.

That means that as soon as you shine the light on the metal, you have pho-
tons that are energetic enough to eject electrons — no need to wait for the 
light to build up enough energy; each photon already has enough energy. 
Therefore, you still get electrons when you shine low-intensity light on metal; 
you just get fewer in number than when you shine more-intense light on the 
metal. Einstein triumphs again.

Einstein and the big prize
Everybody knows that Einstein won the Nobel 
Prize because of E = mc2, right? Wrong. Einstein 
won the Nobel Prize in 1921 because of his 
work on the photoelectric effect. However, he 
was so prolific that he could’ve won it several 
times over.

Winning the big prize is quite a big deal. I have a 
friend at Cornell University who won the Nobel 
Prize in physics. They called him at 5 a.m. direct 
from Stockholm, and he was so excited that he 
didn’t get any sleep for the rest of that night — 
or the next night, either.
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Doing calculations with 
the photoelectric effect
Take a look at an example. Say that as a good physicist, you practice the 
photoelectric effect on the first metal you come across, which happens to 
be Mom’s good set of silver spoons. When you shine your flashlight on the 
silver, do electrons pop out?

The work function of a metal is usually given in electron volts, eV, and 1 elec-
tron volt is the energy needed to move one electron through 1 volt of poten-
tial (you have to push the electron in order to do work on it, so you may 
think of this as pushing the electron toward the negatively charged plate of a 
parallel plate capacitor):

1 eV = 1.60 × 10–19 J

(That’s because work = qΔV, and q for an electron = 1.60 × 10–19 C, whereas 
ΔV = 1.0 V). 

The work function of silver (WF) is 4.72 eV, so you need that many electron 
volts to free an electron from the silver. So what’s the frequency you need to 
start freeing electrons?

Converting 4.72 eV into joules gives you the energy needed to overcome the 
work function:

Eneeded = (4.72 eV)(1.60 × 10–19 J/eV) ≈ 7.55 × 10–19 J

Okay, so you need photons with an energy of 7.55 × 10–19 J. What frequency 
does that correspond to? You know that

Ephoton = hf

where h is Planck’s constant (6.626 × 10–34 joule-seconds) and f is the fre-
quency of the photon. So you can rearrange the formula to say

Because the energy of the photon needs to be at least 7.55 × 10–19 J, you find 
that the minimum frequency needed is
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Okay, so the light you shine on Mom’s silver must have a frequency of at 
least 1.14 × 1015 hertz to eject electrons. What wavelength of light, λ, does 
that correspond to? Because c = λf, you know that 

So the wavelength of light corresponding to the minimum frequency that you 
need is

So the light must have a wavelength equal to or shorter than 263 nanometers — 
and that’s in the ultraviolet range, so your flashlight won’t work for the trick.

Collisions: Proving the Particle Nature 
of Light with the Compton Effect

Even though Einstein had announced that light travels in energy packets, the 
particle-like nature of light wasn’t fully accepted for several more years. What 
happened to change everybody’s mind? In 1923, physicist Arthur Compton 
performed an experiment in which he bounced photons off electrons, show-
ing that both electrons and photons were scattered by the collision. And if 
that doesn’t prove the particle nature of photons, what would?

Compton sent beams of X-rays (that is, high-frequency photons) into tar-
gets made of graphite that had electrons at rest, just waiting to be hit. He 
observed that the photons were actually scattered by their collisions with 
electrons. He also noticed that the frequency of the scattered photons was 
lower than that of the incident photons, indicating that the photon had trans-
ferred some energy to the electron, which was initially at rest.

Not only do photons and electrons collide — they collide elastically, which 
means that both momentum and kinetic energy are conserved during the 
collision. In other words, the electron and photon bounce off each other in 
much the same way as billiard balls would. You can see a diagram of the scat-
tering in Figure 13-3.

 Energy is conserved when the electron is scattered by the photon. What’s that 
look like? That means that

Eincident photon = Escattered photon + KEscattered electron
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Figure 13-3: 
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That is, the energy of the incident photon goes into the energy of the scattered 
photon and into the kinetic energy of the scattered electron (recall that the 
electron starts at rest). That’s half of the picture — the energy-conservation 
half. How about the momentum-conservation half of the picture?

 For a colliding photon and electron, the momentum-conservation equation 
looks similar to the energy-conservation equation, except that here you’re 
dealing with momentum vectors, p, like this:

pincident photon = pscattered photon + pscattered electron

The momentum of a scattered electron is no problem — that’s mv, or the fol-
lowing in relativistic form (see Chapter 12 for details on special relativity and 
what happens at speeds near the speed of light):

where p is the momentum of an object, m is the mass of the object, and v is 
the speed of the object.

So that’s okay for an electron. But what about the momentum for a photon, 
which doesn’t have any mass? Does that automatically mean that photons 
have no momentum? No, as the Compton effect demonstrates. The energy of 
a relativistic particle looks like this (also from Chapter 12):

This equation contains the mass of the particle, too. So are you stuck when 
trying to understand the energy and momentum of a photon, which has no 
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mass? Not quite. You can divide the momentum by energy and have the mass 
drop out — and this works even for photons. So dividing the equation for 
momentum by the equation for energy, you get the following:

For photons, v = c so

And for photons, E = hf, so

And you may notice that c = λf, so for a photon, the following is true:

Putting all this together, Compton was able to show that you can relate the 
wavelength of the incident and scattered photons like this:

where h is Planck’s constant (6.626 × 10–34 joule-seconds), m is the mass 
of the electron (9.11 × 10–31 kilograms), and θ is the scattering angle of the 
photon, as Figure 13-3 shows earlier in this section.

So the difference in wavelength between the incident photon and the scat-
tered photon varies from zero if the photon continues on its way undeflected 
(θ = 0°) to h/mc if the photon is scattered through 90° (θ = 90°). In fact, the 
quantity h/mc comes up frequently in Compton scattering, so it’s called the 
Compton wavelength:

 The Compton wavelength is equal to the following:

λCompton = 2.43 × 10–12 m
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So using the Compton wavelength, the formula for Compton scattering 
gives you

λscattered photon – λincident photon = λCompton (1 – cos θ)

Compton scattering really put the issue to rest — photons can act as par-
ticles. The blackbody experiments (which I discuss earlier in “Blackbody 
Radiation: Discovering the Particle Nature of Light”) gave rise to the idea that 
light was quantized, and Einstein explained the photoelectric effect by saying 
light came in energy packets (see the earlier section “Light Energy Packets: 
Advancing with the Photoelectric Effect”), but what really hit the ball over 
the wall was the Compton effect.

The de Broglie Wavelength: Observing 
the Wave Nature of Matter

In 1924, a physics grad student, Louis de Broglie, came up with an incredibly 
bold suggestion: He proposed that physicists radically change their ideas 
of the nature of particles without any direct experimental grounds for doing 
so. Physicists had already discovered the particle aspects of light waves, but 
there was no evidence that compelled physicists to drastically alter their 
ideas of particles.

However, de Broglie felt nature would be more beautiful if there was a kind of 
symmetry whereby particles could also behave as waves. Because photons 
obey the following equation (which you see in the preceding section):

perhaps electrons and other particles would obey this equation:

That is, perhaps particles of matter have a wavelength, and it’s given by h/p. 
Amazingly, de Broglie turned out to be right. This section explains the experi-
ments that supported this idea and then shows you how the math works.
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Interfering electrons: Confirming 
de Broglie’s hypothesis
Experiments have borne out de Broglie’s idea. Early experiments were per-
formed by bombarding nickel crystals with electrons and getting a diffraction 
pattern, just as you would from any wave. More recently, physicists sent 
electrons through a double-slit setup, producing the distinctive double-slit 
interference pattern (see Chapter 11 for info on light interference).

These physicists had a machine that emitted streams of electrons, and one 
day, they decided to pass the stream of electrons through a double-slit 
arrangement — the kind that gives rise to interference patterns with light 
waves. A funny thing happened on the way to the lecture hall: After adjusting 
the distance the double slits were apart, the same kind of interference pattern 
appeared — light and dark bars — on a photographic film (which records the 
positions at which the electrons strike it). The resulting light and dark bars 
looked exactly like an interference pattern, as Figure 13-4 shows.

 

Figure 13-4: 
The inter-

ference 
pattern of 
electrons 

sent through 
dual slits.

 

That was an amazing result for the time — a stream of electrons passing 
through a double slit and creating an interference pattern, just like light. The 
electrons were acting like waves, so the world had to come to grips with this 
new idea that electrons could act as waves or particles.

What this means is that physicists needed to change their mental picture of 
electrons. No longer could one comfortably think of electrons as small pool 
balls, orbiting around the nucleus of an atom. Instead, physicists had to think 
in terms of tiny wave-like packets of matter.

Calculating wavelengths of matter
De Broglie stated that the wavelength of an electron (λ) equals Planck’s con-
stant (h = 6.626 × 10–34 joule-seconds) divided by momentum (p):
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So do only electrons have a de Broglie wavelength? No, any object that has a 
momentum has a de Broglie wavelength, although the wavelength of objects 
you can see with the naked eye is vanishingly small. In this section, you cal-
culate wavelengths of both electrons and larger objects.

Finding an electron’s de Broglie wavelength
Try some numbers to see how de Broglie’s wavelength works. For example, 
say you set an electron loose in your home and it starts zipping around at 
1.9 × 106 meters per second. What’s its de Broglie wavelength? The electron’s 
speed is a nonrelativistic speed, far short of the speed of light in a vacuum, c, 
so the momentum of the electron is given by

p = mv

The mass of an electron is 9.11 × 10–31 kilograms, so the electron’s momentum is

p = (9.11 × 10–31 kg)(1.9 × 106 m/s) ≈ 1.74 × 10–24 kg-m/s

So the electron’s de Broglie wavelength is

That means the electron’s wavelength is 0.381 nanometers — about a 
thousand times smaller than the wavelength of visible light.

Finding the de Broglie wavelength of visible objects
Any object that has a momentum has a de Broglie wavelength. At about 0.381 
nanometers, the de Broglie wavelength of the electron in the preceding sec-
tion is huge compared to the de Broglie wavelength of an object visible to the 
naked eye.

Say that you’re determined to see the de Broglie wavelength for yourself, and 
you’ve decided to throw a baseball past a wavelength meter. You throw the 
baseball, mass 0.150 kilograms, at a hefty 90.0 miles per hour. What’s its de 
Broglie wavelength?

First, find out how fast the baseball is going in meters per second. As every-
body knows, 1 meter per second is about 2.23693629 miles per hour. Okay, 
that’s a little ridiculous on the significant digits, but you find that 90.0 miles 
per hour equals the following:
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So the baseball’s momentum is

p = mv = (0.150 kg)(40.2 m/s) = 6.03 kg-m/s

Now you can figure out the de Broglie wavelength of the baseball using 
the equation:

So the wavelength of the baseball is 1.10 × 10–34 meters, or 1.10 × 10–25 nano-
meters — an incredibly small distance. You cannot measure distances that 
small. I realize saying that is risky in a field as unpredictable as physics, but 
this wavelength is on the order of the Planck length.

 Some theories about quantum gravity say that Planck length is the length at 
which the apparently continuous structure of the universe breaks down. At 
such a minute scale, quantum physics dominates, and what used to be mea-
surements can be discussed only in terms of probabilities. So how small is the 
Planck length? It would take 100,000,000,000,000,000,000 (that is, 1020) Planck 
lengths to reach across a single proton. And that’s about the wavelength of a 
baseball going 90 miles per hour. Blows the mind, doesn’t it?

Not Too Sure about That: The Heisenberg 
Uncertainty Principle

You may have heard of the uncertainty principle — it’s one of those phys-
ics concepts that has gravitated to everyday speech, as in, “Where’s little 
Jimmy?” . . . “I don’t know — the closer you try to pin him down, the farther 
away he’ll be. You know, the uncertainty principle of children.”

You take a look at the actual uncertainty principle here, including a derivation 
of the equation from what you see in the preceding section on matter waves.

Understanding uncertainty 
in electron diffraction
Figure 13-5 shows a stream of electrons going through a single slit and creat-
ing a single-slit diffraction pattern on a screen (see Chapter 11 for more on 

20_538067-ch13.indd   28820_538067-ch13.indd   288 6/1/10   10:19 PM6/1/10   10:19 PM



289 Chapter 13: Understanding Energy and Matter as Both Particles and Waves

single-slit diffraction patterns). In the days of Newton, you wouldn’t expect to 
see a diffraction pattern at all when you passed a stream of electrons through a 
single slit. You’d expect to see an exact image of the single slit on the screen (if 
you use photographic film as the screen, the pattern would be recorded on it).

Today, however, you know better. You know that you get a diffraction pattern — 
that is, a central bright bar surrounded by dark bars and lesser bright bars, as 
Figure 13-5 shows. Here’s the insight this brings: When you’re dealing with the 
small world (like electrons), you can no longer express things exactly.

For any individual electron going through the single slit, you can’t say exactly 
where it’s going to end up on the screen — it could end up anywhere there’s 
a bright bar in the diffraction pattern. You can’t assume that the electron 
will just keep going straight. You can speak of the electron’s location on the 
screen only in terms of probabilities — and as you send more and more elec-
trons through the slit, you’ll end up with the diffraction pattern eventually.

Deriving the uncertainty relation
Say that the wavelength of the electrons passing through a single slit is λ and 
that the slit width is Δy, as in Figure 13-5. You can find the angle, θ, of the first 
dark bar in the diffraction pattern (as indicated in the figure) with the follow-
ing equation:

In other words, θ tells you the angular width of the central bright bar (where 
the electron will land about 85 percent of the time). And if θ is small, sin θ is 
about equal to tan θ (that is, for small angles, sin θ ≈ tan θ), so you have the 
following relation:

But what is the wavelength of the electron, λ? That’s where de Broglie comes in, 
because you know that for matter waves, the following is true (from the earlier 
section “The de Broglie Wavelength: Observing the Wave Nature of Matter”):

where p
x
 is the momentum of the electrons in the x direction and h is 

Planck’s constant (6.626 × 10–34 joule-seconds).
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Figure 13-5: 
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Substituting this value for λ into the equation for tan θ gives you this result:

So far, so good. Now take a look at Figure 13-5. If the electrons enter the 
slit with momentum p

x
, then after going through the slit, they acquire an 

unknown momentum of Δp
y
 in the y direction (before the slit, you’re assum-

ing the electrons’ momentum in the y direction was zero). Therefore, you 
have this relation between p

x
 and Δp

y
:

So setting the two equations for tan θ equal to each other gives you 
this result:
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Multiplying both sides by p
x
 and solving for h leaves you with

And actually, this is pretty close to the real Heisenberg uncertainty principle, 
which says that

or in a more generic form:

 Where Δp and Δx are the uncertainty in momentum and position respectively, 
the Heisenberg uncertainty relation says that the uncertainty in an object’s 
momentum multiplied by the uncertainty in position must be greater than or 
equal to h/2π. In fact, h/2π is so common that it got its own name,  (pronounced 
“h-bar”), so you often see Heisenberg’s uncertainty relation written like this:

where

 ✓ 
 
(Planck’s constant divided by 2π)

 ✓ Δp is the uncertainty in a particle’s momentum

 ✓ Δx is the uncertainty in a particle’s position

 Here’s how to think of the uncertainty relation for electrons passing through a 
single slit: By localizing the electrons to Δy (the slit), you introduce an uncer-
tainty in the momentum Δp

y
 such that .

 As you can see from Heisenberg’s relation, the more accurately you know a 
particle’s momentum — that is, the smaller the uncertainty in momentum, 
Δp — the bigger the uncertainty in position, Δx. Conversely, the more accu-
rately you know a particle’s position — that is, the smaller the uncertainty in 
position, Δx — the bigger the uncertainty in momentum, Δp.

As a matter of fact, the Heisenberg uncertainty principle can also connect the 
energy of a particle, E, with the time that particle has that energy, t, like this:
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where

 ✓ (Planck’s constant divided by 2π)

 ✓ ΔE is the uncertainty in a particle’s energy

 ✓ Δt is the uncertainty in the time interval during which the particle is in 
this state

Calculations: Seeing the uncertainty 
principle in action

 The Heisenberg uncertainty principle shows an inverse relationship: The more 
accurately you know the position of a particle, the less accurately you can 
know its momentum, and vice versa.

In this section, you plug in some numbers to see how pinpointing one mea-
surement leads to less accuracy in the other.

Finding uncertainty in speed, given an electron’s position
Say that you use your new super-duper (and entirely theoretical) microscope 
to pin down the position of an electron to 1.00 × 10–11 meters. What’s the min-
imum uncertainty in the electron’s speed? Heisenberg tells you that

So the minimum uncertainty in the electron’s momentum is

Putting in the numbers gives you

What’s the uncertainty in speed? Well, for a nonrelativistic particle, p = mv, so
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Therefore, the minimum uncertainty on speed is

So if you know an electron’s position to within 1.0 × 10–11 meters of its actual 
location, you can only narrow its speed down to something within 1.15 × 107 
meters per second of the actual speed — a mere 25,700,000 miles per hour.

That, of course, brings up the question of how you can measure anything 
about something moving at 25,700,000 miles per hour with respect to you, 
and the answer is that it’d be very difficult.

Finding uncertainty in position, given speed
Say that you want to hold an electron virtually still, at 1.00 × 10–5 meters per 
second — how closely can you localize it? At 1.00 × 10–5 meters per second, 
the electron’s momentum is

Δp = mΔv = (9.11 × 10–31 kg)(1.00 × 10–5 m/s)

 ≈ 9.11 × 10–36 kg-m/s

And you can find the minimum uncertainty on position, given an uncertainty 
in momentum, like this:

So if you pin down the speed of an electron to within 1.0 × 10–5 meters per 
second of the actual speed, you can’t locate it to less than 11.5 meters of its 
true location. Pretty slippery things, electrons!
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Chapter 14

Getting the Little Picture: 
The Structure of Atoms

In This Chapter
▶ Finding the nucleus with Rutherford’s experiment

▶ Picturing orbitals with the Bohr model

▶ Linking quantum physics and atomic structure

With the physics of the atom, you can understand an incredibly broad 
range of the behavior of your world. When you know that ordinary 

matter is composed of atoms, you can see why it comes in three main states: 
solid, liquid, and gas. You can understand much about the structure of 
solids, such as crystals, and the origin of laws of pressure in gasses. You can 
understand how atoms stick together to make molecules. You can picture 
much of how atoms and molecules interact with each other — in short, you 
can understand chemistry. That chemistry is vital to the comprehension 
of the functioning of living cells, so it’s central to biology, too. If you want 
a basis for understanding so much of the world, knowing about the atom is 
definitely worth your while!

Although you can see atoms with various high-tech microscopes, atoms are 
invisible to the naked eye. Thus, it should come as no surprise that nobody 
knew how atoms were built until the early 20th century. Although Greek 
philosophers had theorized about atoms as the building blocks of matter, 
no one knew their structure — not Galileo, not Benjamin Franklin, not Isaac 
Newton — until the early 1900s.

The story of the atom — what makes it work and gives it the properties you 
observe today — is the subject of this chapter. You find out how physicists first 
came to accept a model that involved electrons orbiting around a nucleus. 
You also see refinements to that model and info on what quantum physics 
says about atomic structure.
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Figuring Out the Atom: 
The Planetary Model

In the early 20th century, the accepted model of the atom was an English 
one. People already knew that the atom consisted of equal parts of positive 
charges and negative charges. J. J. Thomson, who discovered the electron, 
suggested that the positive charge was spread throughout the atom in a sort 
of “paste or pudding” material. The whole atom was filled with positive paste. 
The negative charges were embedded in the positive paste and held sus-
pended there. That was the picture — negative charges suspended like plums 
in the positive paste. Physicists already knew that the negative charges were 
very light.

This model became known as the plum pudding model of the atom. And it was 
universally accepted until a physicist named Rutherford came up with an 
experiment to challenge it. This section describes that experiment and how it 
led to a planetary model of the atom.

Rutherford scattering: Finding the nucleus 
from ricocheting alpha particles
As in so many other experiments since the discovery of the atom, Ernest 
Rutherford (along with his students Hans Geiger and Ernest Marsden) needed 
a very tiny tool to probe very small distances. He chose a beam of charged 
particles moving at light speeds.

Some radioactive materials emit alpha particles, which have a double positive 
charge and are pretty massive (physicists now know that alpha particles are 
the nuclei of helium atoms, but in those days that was unknown, which is 
why they’re called alpha particles, not helium nuclei). Rutherford directed a 
stream of alpha particles at a piece of gold foil and took a look at the results 
on screens that surrounded the foil target. The screens were arranged so that 
the widest possible range of angles of deflection could be observed (nearly 
the full 360° around the target). You can see his setup in Figure 14-1.

Classically, you’d expect all the alpha particles to go through the gold foil 
undeflected — alpha particles are relatively massive, and you couldn’t expect 
the super-lightweight negative charges in the plum pudding model to deflect 
them. The positive charge was thought to be spread too thin to offer any 
resistance to the intruding alpha particles.

What happened instead was that many alpha particles were deflected as they 
passed through the foil, as you can see in the figure. In fact, some bounced 
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off the target and reversed direction entirely. Rutherford said that it was “as 
incredible as if you fired a 15-inch shell at a piece of tissue paper and it came 
back and hit you.”

 

Figure 14-1: 
In 

Rutherford 
scattering, 

some alpha 
particles 

bounce 
back off the 
nuclei in the 

gold foil.
 

Gold foil

Screens

Source of alpha particles

Clearly, the classical plum pudding model needed some refinement. 
Rutherford proposed that the positive charge in an atom must be concen-
trated into a very small volume — the nucleus. That was the beginning of the 
modern theory of atomic structure.

Today, physicists know that although the atom is small — about 10–10 
meters — the nucleus at the center is even smaller — about 10–15 meters. 
Put another way, if the nucleus was about the size of the width of a dime, the 
whole atom would be about a kilometer in diameter. So as you can see, the 
nucleus is tiny compared with the atom.

Collapsing atoms: Challenging 
Rutherford’s planetary model
The tiny size of the nucleus led Rutherford to model the atom after the solar 
system. After all, the planets orbit around the sun, so the parallel was a 
natural one. The electrons were the planets, and the sun was the nucleus.
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But as soon as this model was proposed, other physicists attacked it. If the 
electrons were simply in orbit around the nucleus, they would undergo a 
centripetal acceleration. And when electrons are accelerated, they radiate 
electromagnetic radiation — light (as I discuss in Chapter 7). So you’d expect 
the atom to radiate light, and then as the electrons lost energy, they’d 
collapse into the nucleus. In theory, an atom based on the simple planetary 
model would last only about 10–10 seconds.

That didn’t square with observation — matter is pretty stable; it doesn’t 
just collapse on itself in a flash of light. So it seemed clear that the simple 
planetary model needed some adjustment, too.

Answering the challenges: Being 
discrete with line spectra
The simple planetary model of the atom had problems because electrons 
would radiate and lose energy, eventually dropping into the nucleus. That 
problem puzzled physicists for quite some time. Rutherford had proven the 
existence of the atomic nucleus, but the planetary model didn’t seem to 
work right, because the electrons in the atomic orbit would just radiate 
away their energy.

Or would they? In the early 20th century, atoms were the hot topic, and 
researchers did many experiments. Some of those experiments, which I dis-
cuss in this section, included taking a look at the electromagnetic spectrum 
that atoms emitted when they were heated.

Observing free atoms in gases
The electromagnetic spectrum emitted by a solid, such as a filament in a light 
bulb, is continuous. That is, a continuous range of wavelengths is emitted, 
some of which are in the visible range. And that led physicists to disregard 
the planetary model, because they assumed that electrons would just keep 
emitting radiation until they fell into the nucleus.

In a solid, atoms are strongly influenced by their neighbors. All the atoms 
bound in the solid emit and absorb light, and because they’re all bound 
atoms, you end up with a continuous spectrum of wavelengths of light, some 
visible, some not. But when you take a look at free atoms in gases, not in 
solids, the story is a different one.

When you look at atoms in a heated gas, those atoms are free to do their own 
things, as individual atoms. That’s when their individual atomic characteristics 
take over. The spectrum observed from heated gases turns out not to be 
continuous — the wavelengths are discrete. That is, only certain wavelengths 
are present.
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For example, take a look at Figure 14-2, which shows the emitted spectrum of 
hydrogen in the visible region of the electromagnetic spectrum. Note that only 
specific wavelengths are present in the light spectrum emitted by hydrogen — 
which indicates that something then-unknown was going on with the atom.

 

Figure 14-2: 
Line spectra 
of hydrogen 

atoms.
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The rejection of the planetary model of the atom was based on the assumption 
that electrons would just keep emitting, at ever-lower energies, until they fell 
into the nucleus. But experiment indicated that electrons weren’t free to emit 
just any old wavelength — they had to emit only certain wavelengths. Perhaps 
there was hope for the planetary model after all.

Identifying wavelength patterns with the 
Lyman, Balmer, and Paschen series
Experimentally, hydrogen was observed to create a number of different 
series of lines with a definite pattern of wavelengths. The series repeated 
itself throughout the spectrum — in the infrared, visible, ultraviolet, and 
other parts of that spectrum.

Three such series are the Lyman, Balmer, and Paschen series, and researchers 
have observed that their particular patterns of wavelengths match. Although 
the actual wavelengths of each series are different, each series has the same 
characteristics — many close-together wavelengths, then wavelengths more 
spread apart, ending with some wavelengths very far apart.

 Experimenters discovered equations that give you the wavelengths of these 
series. Here’s how to get the wavelengths of these series of hydrogen:

 ✓ Lyman series: 

 ✓ Balmer series (the visible series):
 

 ✓ Paschen series: 

In all these series, R is the Rydberg constant, 10,973,731.6 m–1, or about 
1.097 × 107 m–1.
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 The discovery that atoms — in particular, hydrogen atoms — radiated light 
only at specific wavelengths gave life to the planetary model of the atom again, 
because it said that not just any wavelengths were allowed; instead, only par-
ticular wavelengths were allowed, which implied that electrons couldn’t just 
keep radiating ever-smaller amounts of energy.

Finding the shortest wavelength in the Balmer series
What is the shortest wavelength in the visible series, the Balmer series? You 
can use the equation for the Balmer series:

The shortest wavelength (λ) corresponds to the biggest reciprocal (1/λ), and 
you get that when the 1/n2 term goes to zero:

And that means that n → ∞. So for the shortest wavelength of the Balmer 
series, you have the following:

Taking the reciprocal gives you the shortest wavelength in the Balmer series. 
Here’s what you get:

So that’s the shortest wavelength in the Balmer series: 365 nm, which is deep 
violet.

Finding the longest wavelength in the Balmer series
How about that longest wavelength on the Balmer series? You can use the 
equation for the Balmer series:

The longest wavelength (λ) corresponds to the smallest reciprocal (1/λ), and 
you get that when the 1/n2 term is as large as possible — that is, when n = 3 
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(that’s the minimum possible value for the n in the Balmer series). So for the 
longest wavelength of the Balmer series, you have

Taking the reciprocal gives you the longest wavelength in the Balmer series:

And that’s the longest wavelength in the Balmer series: 656 nm, which 
corresponds to red. So the Balmer series neatly encompasses most of the 
visible spectrum — deep violet to red.

Fixing the Planetary Model of the
Hydrogen Atom: The Bohr Model

A physicist named Niels Bohr came up with a new model of the hydrogen 
atom. He merged the new quantum ideas of Max Planck and Albert Einstein to 
come up with the Bohr model of the atom. He postulated that electrons were 
allowed only certain energies in atoms — they couldn’t have just any energy. 
That idea was close to the theories on quantization in blackbody radiation, 
which I cover in Chapter 13.

 Bohr’s model of the atom violated the law of electromagnetism, which said 
that accelerating charges radiate electromagnetic waves. But Bohr didn’t care 
much; the current laws of physics couldn’t explain how the atom worked (at 
least, not insofar as predicting the line spectra like the Balmer series), and 
his could.

Bohr arranged the electrons in an atom in specific orbits, which corresponded to 
the allowed total-energy levels for the electrons in terms of kinetic and electric 
potential energy. You can see the Bohr model illustrated in Figure 14-3. Note 
how this model is consistent with the findings of Rutherford: that the positive 
charges should be concentrated together rather than smoothly distributed 
(like the plum pudding model).

Furthermore, Bohr took Einstein’s then-new ideas on photons and said 
that when electrons go from a higher orbit (with more energy and a larger 
orbital radius) to a lower one (with less energy and a smaller orbital radius), 
a photon is emitted by the electron. The fact that only specific orbits are 
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allowed accounts for the specific wavelengths in the spectrum of gases (for 
details, see the earlier section “Answering the challenges: Being discrete with 
line spectra”).

 

Figure 14-3: 
The Bohr 

model of the 
atom.

 

Photon

Ef

Eo

In other words, when an electron falls from a higher orbit, where the electron 
has total energy Eo, to a lower one, where the electron has energy Ef, the 
energy of the emitted photon, hf, is

hf = Eo – Ef

where h is Planck’s constant, 6.626 × 10–34 J-s, and f is the frequency of the 
photon. The Bohr model did explain the observed atomic spectra well and so 
gradually came to be accepted.

Finding the allowed energies of 
electrons in the Bohr atom
After developing his model, Bohr turned to trying to calculate the allowed 
energy levels for the electrons in the atom. An electron’s total energy is the 
sum of its kinetic and potential energy:

E = KE + PE

And that looks like this:

21_538067-ch14.indd   30221_538067-ch14.indd   302 6/1/10   10:20 PM6/1/10   10:20 PM



303 Chapter 14: Getting the Little Picture: The Structure of Atoms

where m is the mass of the electron, v is its speed, k is Coulomb’s constant, 
Z is the number of protons in the nucleus, e is the electron’s charge, and r 
is the radius of the electron’s orbit (see Chapter 3 for more on the potential 
energy of point charges).

How do you figure out mv2? The centripetal force on an electron is equal to

And centripetal force also equals

So you can set the two forces equal and solve for mv2:

Substituting this into the equation for total energy gives you

And that’s the expression for the energy of an electron in an atom. Note: It’s 
negative because the electron is bound in the atom.

Getting the allowed radii of electron 
orbits in the Bohr atom
Bohr’s equation for the energy of an electron in an atom doesn’t do you much 
good until you figure out the allowed values of the radius r.

Bohr proposed that angular momentum — that is, the angular momentum of 
electrons — was quantized in atoms. Angular momentum, L, equals

L = mvr
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So Bohr imposed this quantization on angular momentum:

where h is Planck’s constant, 6.626 × 10–34 J-s, and n is an integer, where the 
various allowed values of the angular momentum correspond the values of n. 
In other words, he said that angular momentum is a multiple of h/2π.

Solving this equation for v
n
 gives you

In the preceding section, you see that

Finding the speed squared gives you

And mv
n

2 is

So set your two values of mv2 equal to each other:

Solving for r
n
 here gives you

And that’s what the allowed Bohr radii are. With this information, you can 
finally calculate the allowed energies.

 Here are the allowed Bohr radii in meters:
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Finding allowed energy for hydrogen using the Bohr radius
Now go back and find the allowed energy levels. You know that

So substituting in for r gives you

Here’s what that looks like in joules:

And here’s what the allowed energy levels look like in electron volts:

For example, what’s the lowest energy an electron can have in hydrogen? 
That would be when n = 1 and Z (the number of protons in the atom) = 1, 
so you have the following:

So that’s the most tightly you can bind an electron in hydrogen: –13.6 
electron-volts. That is, it takes 13.6 electron-volts of energy to free an 
electron in the n = 1 state, also called the ground state.

How about the n = 2 state of hydrogen? The energy of this level looks like this:

So the energy with which an electron is bound in the n = 2 state of hydrogen 
is –3.4 electron-volts. As you can see, the energy levels of the successively 
higher states decrease, until you ultimately get a bound state energy of 0 — 
which means the electron isn’t bound at all.
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Finding allowed energy levels for lithium ions, Li2+

 Here’s something you should know: The Bohr model applies only to atoms 
with one electron. That’s because it’s still a relatively simple model that 
doesn’t take into account the interaction between electrons (all electrons 
repel each other, and that affects their total energy).

So if you want to use the Bohr model for, say, lithium, which has three pro-
tons in its nucleus (Z = 3), you can use the equation for the energy levels only 
if you have doubly ionized lithium — that is, if you have a lithium atom where 
two of the electrons have been removed and you have only one electron 
left (such lithium ions have a net positive charge of +2). For doubly ionized 
lithium, the energy of the ground state is

So the ground state of doubly ionized lithium has an energy of 122 electron-volts.

Finding the Rydberg constant using 
the line spectrum of hydrogen

 With Bohr’s picture of the hydrogen atom in mind, the general equation for 
the wavelength of electron transition in hydrogen is

where n
i
 is the initial energy level of the electron and n

f
 is the final energy 

level of the electron.

In the earlier section “Identifying wavelength patterns with the Lyman, Balmer, 
and Paschen series,” the wavelengths of the Balmer series of hydrogen is given by

That’s because the Balmer series includes electron transitions from higher 
orbits to the n = 2 state.

The Lyman series is just the series with n
f
 = 1:
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And the Paschen series is the series with n
f
 = 3:

Furthermore, the energy levels of an electron in hydrogen are

For photons, E = hf. And because , that means that

So substitute the value of E
n
 into the equation for 1/λ, and it becomes

In other words, the Bohr theory predicts that the Rydberg constant, R, is 
equal to

Wow, that’s quite a lot of letters. And it turns out to be completely right. 
So Bohr’s model of the hydrogen atom predicts the Rydberg constant as a 
combination of other constants. Cool!

Putting it all together with 
energy level diagrams
Keeping track of the electron transitions in an atom like hydrogen can be 
tough. You have the 3 → 2 transition (that is, from the third excited state to 
the second excited state), the 5 → 3 transition, the 7 → 5 transition, and, of 
course, many more.

To help keep track of all the possible transitions, you can look at energy level 
diagrams. You can see an example for hydrogen in Figure 14-4. There, the 
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various energy levels are represented as horizontal lines (some of the lines 
are marked with their energy levels in electron-volts in the figure).

Transitions from one energy level to another appear as downward-pointing 
arrows. Thus, you can see that the first line in the Lyman series goes from 
the –3.4 electron-volt energy level to the –13.6 energy level (which means that 
the emitted photon has energy of 13.6 – 3.4 eV = 10.2 eV), and so on.

 

Figure 14-4: 
An energy 

level 
 diagram.

 

−0.54 eV

Balmer series

Paschen series

−0.85 eV

−1.5 eV

−3.4 eV

Lyman series
−13.6 eV

You can see the various popular series of the hydrogen atom marked 
according to their energy level transitions in the figure (many more such 
series in addition to those shown exist).

De Broglie weighs in on Bohr: Giving 
a reason for quantization
Louis de Broglie (who shows up in the discussion of matter waves in 
Chapter 13) took a look at Bohr’s theory and asked why angular momentum 
should be quantized like this:

In other words, why are only specific angular momentums allowed?
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 De Broglie’s explanation was that if you think of the electron in motion around 
the nucleus in terms of matter waves (which were his specialty), then the 
quantization condition simply becomes the following: A full wavelength (or 
two wavelengths, or some integer number) must equal the circumference of 
the electron’s orbit, 2πr, where r is the radius of the electron’s orbit.

In other words, according to de Broglie, the quantization of angular momentum 
really meant that

And because, according to de Broglie’s theory, the wavelength of a matter 

wave is , you can substitute this in for λ to give you

And because p = mv, you have

So solving for mvr, the angular momentum, gives you

But because the angular momentum, L, equals mvr, this is simply the Bohr 
quantization of angular momentum:

And that’s a very nice result. Instead of saying that the angular momentum 
must be quantized — it’s not obvious why this should be so — you instead 
say that a multiple of the electron’s matter wave must be equal to the 
circumference of each orbit. Chalk another one up for de Broglie.

Electron Configuration: Relating 
Quantum Physics and the Atom

Bohr’s model of the hydrogen atom was a good one, and it was a milestone. 
For the first time, the allowed energy levels of an atom were not allowed to 
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be continuous but were found to be discrete — that is, only specific allowed 
radii of the electrons were permitted: n = 1, 2, 3, and so on.

Because only specific values are allowed, n became the first quantum number 
of the atom. The quantum number tells you which of the allowed states that 
a particle (such as an electron) is in. This section introduces four quantum 
numbers and explains their significance.

Understanding four quantum numbers
Physics has so far found four quantum numbers for the electrons in an atom. 
I explain all four of them here.

The principal quantum number, n
The principal quantum number is n, the quantum number that Bohr discov-
ered, corresponding to which orbit the electron is in. The ground state has 
n = 1, the next level has n = 2, and so on. Each successive energy level corre-
sponds to an orbital radius farther away from the nucleus.

The orbital angular momentum quantum number, l
In addition to the principal quantum number, electrons also have an angu-
lar momentum quantum number, which is given the letter l. This quantum 
number indexes which of the permitted angular-momentum states that an 
electron is in.

The l quantum number can vary from 0 to n – 1. The total angular momen-
tum, L, of an electron with angular momentum quantum number l is

When the angular momentum quantum number of an electron is zero, the 
electron has no net angular momentum.

 The quantum-mechanical picture of the atom does not see the electron as a 
particle orbiting the nucleus. Instead, the electron is a kind of wave that’s 
allowed to have certain specific configurations. So you don’t talk of electron 
orbits but electron states, which correspond to the different configurations of 
the waves. The wave quantifies the probability of finding the electron at any 
given point. If the magnitude of the wave is larger, then the electron is more 
likely to be found there if you measure its position.
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You can see a picture of this wave for an electron in a zero angular-momentum 
state (l = 0) in Figure 14-5. The electron wave is a simple sphere for the zero 
angular-momentum state.

 

Figure 14-5: 
Electrons 
in an l = 0 

state.
 

The electron wave can look decidedly strange if the electron has a nonzero 
angular momentum quantum number. For example, take a look at the orbit 
of an l = 2 electron in Figure 14-6. As l increases (up to n – 1), the orbits of 
electrons can become correspondingly complex.

 

Figure 14-6: 
Electrons in 
an l = 2, m = 

±1 state.
 

The magnetic quantum number, m
The quantum number m is called the magnetic quantum number because it 
results when you apply a magnetic field to the atom. Applying a magnetic 
field to an electron that has angular momentum means that electron can have 
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a component of angular momentum in the direction of the applied field. That 
direction of the magnetic field defines an axis, which is conventionally called 
the z axis in physics (as opposed to x or y).

The magnetic angular momentum is the component of the electron’s angu-
lar momentum along the z-axis, so m can take values from –l to +l — which 
is why the magnetic quantum number is sometimes referred to as m

l
. And 

because it represents the state of angular momentum in the z direction, it’s 
also referred to as m

z 
in some physics books. But in this book, I simply use m.

 The z component of the electron’s angular momentum, L
z
, is equal to 

the following:

Note that the magnetic quantum number, m, of the electron wave in 
Figure 14-6 is ±1.

The spin quantum number, ms (or s)
Finally, physicists discovered that each electron also has an intrinsic spin. 
That is, even when an electron is in an l = 0 state, where m is also 0, the elec-
tron still has an intrinsic spin. Electron spin something like the spin of the 
Earth, which spins about its axis, even as it rotates around the Earth.

The spin quantum number is given the letter s. Physicists have since deter-
mined that many subatomic particles, including photons, have an intrinsic 
spin. The spin of a photon is 1, and the spin of an electron is s = 1⁄2.

Like the orbital angular momentum, spin can have a component along an 
applied magnetic field — m

s
. The m

s
 quantum number is the fourth quantum 

number of an electron in an atom (the s quantum number is intrinsic to the 
electron and doesn’t change, whether or not it’s in an atom). For an electron, 
m

s
 can have the values –1⁄2 or 1⁄2.

 For an electron, m
s
 = 1⁄2 is called spin up and m

s = –1⁄2 is called spin down, corre-
sponding to the component of the electron’s spin along or against an applied 
external magnetic field.

Number crunching: Figuring out 
the number of quantum states

 Electrons in an atom can have four quantum numbers — n, l, m, and m
s
. If you 

know the value of n, you can figure out the number of different quantum states 
an electron can have. Here’s how it works:
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 1. Use n to find the number of l states.

  Suppose you want to find how many different quantum states an elec-
tron in the n = 2 energy level can have. The equation for L in the earlier 
section “Understanding four quantum numbers” tells you that l = 0, 1, 
2, 3, ..., n – 1. So for n = 2, you can have angular-momentum quantum 
numbers l from 0 to n – 1, or 0 to 1. So that’s two quantum states to start.

 2. Use the l states to find the number of m states.

  The equation for the z component of the electron’s angular momentum, 
L

z
, in “Understanding four quantum numbers” says that m = –l, –l + 1, ..., 

l – 1, l. The l = 0 state can only have m = 0, but the l = 1 state can have 
m = –1, 0, or 1. So that’s a total of four quantum states so far.

 3. Account for spin for each of the m, l, and n states.

  The electron can also have a spin quantum number, m
s
. No matter what 

the other quantum states of the electron, it can have either spin down or 
spin up — that is, m

s
 = –1⁄2 or m

s
 = 1⁄2. Thus the n, l, m state of 2, 0, 0 splits 

into two states:

 • Spin down: 2, 0, 0, –1⁄2

 • Spin up: 2, 0, 0, 1⁄2

  The 2, 1, 1 state also splits into two states:

 • Spin down: 2, 1, 1, –1⁄2

 • Spin up: 2, 1, 1, 1⁄2

  And the 2, 1, 0 and 2, 1, –1 states likewise split into two states. Each of 
the n, l, m states splits into two states when you add the spin of the elec-
tron: n, l, m, –1⁄2 and n, l, m, 1⁄2, so that converts the four quantum states 
into eight.

And that’s the answer: An electron with atomic orbit number 2 can have a 
total of eight quantum states.

Figure 14-7 shows a tree diagram of the quantum numbers of the first few 
electron states in a hydrogen atom. In this figure, you can see how each 
quantum number introduces a new branch to the tree so that the number of 
possible states increases. (I explain the meaning of the labels on the far right 
of this figure later in “Using shorthand notation for electron configuration.”)

 Although there are four quantum numbers for every electron, only the prin-
cipal quantum number, n, and the angular momentum quantum number, l, 
determine the energy level of the electron. The energy level is mostly deter-
mined by the principal quantum number, n, but there are some small differ-
ences in energy depending on the angular-momentum quantum number, l. 
Under these circumstances, the energy of the electron state does not depend 
on the other two quantum numbers. However, if a magnetic field is present, 
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then there can be an interaction that causes the other two quantum numbers 
to change the energy level of the state.

 

Figure 14-7: 
A tree 

diagram 
showing the 

quantum 
numbers of 

the first few 
electron 

states.
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Multi-electron atoms: Placing electrons 
with the Pauli exclusion principle
Not every atom in the world is a hydrogen atom (thank goodness). Other 
atoms have more electrons, and the electrons can interact with each other.

In hydrogen, you have only one proton, so the atomic number, Z, equals 
one. In neutral atoms, Z always equals the number of electrons in an atom 
(because it’s the same as the number of protons). The one electron in hydro-
gen spends most of its time in the ground state, n = 1. If it’s in a higher prin-
cipal quantum level, it emits a photon and drops down to the ground state 
pretty quickly — it doesn’t stay in the excited states for long.

So what’s preventing all the electrons in an atom with a higher Z value from 
all dropping down to the ground state? For example, say you have a nickel 
atom, which has Z = 28. The electrons in an atom of nickel are in all kinds of 
states: n – 1, n – 2, n – 3, and so on. Why don’t they all just fall down to the 
n = 1 ground state?
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Bonding with atoms: The physics of chemistry
The structure of particular atoms and their 
electron states means that they like to com-
bine with other atoms in very particular ways. 
So when atoms and molecules get together, 
they can reconfigure or react. The study of how 
atoms and molecules react is exactly what you 
study in chemistry.

For instance, atoms often bond to each other 
to create molecules. Chemical bonds usu-
ally involve the atoms’ outermost electrons 
(valence electrons) because they’re in higher 
energy states, so it takes less energy to remove 
them. Hence, these electrons are least tightly 
bound to the atom.

Ionic bonds occur when an electron in one 
atom is in a particular energy state and there’s 
an unoccupied state that has a lower energy in 
a nearby atom. The atoms can then exchange 
the electron, leaving the atom that the electron 
came from positively charged and the atom 
that it moved to negatively charged — the 
atoms become ionized. The two charged atoms 

then stick together by the electrostatic force 
between them, forming an ionic bond.

At other times when atoms come together, the 
shape of one of the electron waves becomes 
distorted until it’s spread between the two 
atoms. Two electrons with opposite spins can 
sit in this state. When this happens, these elec-
trons are effectively shared between the two 
atoms, resulting in a covalent bond.

Atomic structure also plays a role in the release 
of heat during some chemical reactions. A 
simple example of a chemical reaction is the 
burning of coal. There’s a very strong covalent 
bond between oxygen atoms and carbon atoms 
because of the configurations of their electron 
states. When these atoms get close enough, 
they can combine very violently because of the 
strength of the bond. This violent motion causes 
the neighboring atoms to vibrate — this is the 
heat released in the burning of the carbon in 
oxygen.

 The Pauli exclusion principle says that no two electrons in any atom can have 
the same combination of all four quantum numbers. This means you can only 
have two electrons in the ground state of any atom, because n = 0 only allows 
l = 0, m = 0, and spin up (1⁄2) or spin down (–1⁄2) electrons. The n = 2 state can 
only have eight electrons (as you find out in the preceding section) and so on.

 At first, Wolfgang Pauli proposed his exclusion principle simply to describe the 
structure of the atom as deduced in experiments. Without it, there was no reason 
all the electrons didn’t just collapse into the same, lowest energy state. Later on, 
as quantum mechanics developed, this principle found a strong theoretical foot-
ing as it applied to all particles with non-integer spin, not just the electron.
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Say you’re building a nickel atom from scratch, particle by particle. You 
assemble the protons and neutrons into the atom’s nucleus first. Then you 
start adding electrons:

 1. The first two electrons go into the ground state, the n = 1 state.

  This state corresponds to a particular radius from the nucleus where 
the electron wave has greatest magnitude; it’s sometimes called the 
K shell.

 2. Next, start stocking up the n = 2 state; eight electrons total would fit 
into that state.

  This state is sometimes called the L shell.

 3. Put electrons in the next level, the n = 3 level.

  The M shell holds up to 18 electrons. Along with the 2 electrons in the 
K shell and the 8 in the L shell, this accounts for all 28 electrons.

With all these quantum numbers available, it can be pretty tough to keep 
track of. So in time, physicists developed a shorthand notation, which I 
explain next.

Using shorthand notation 
for electron configuration

 Take a piece of boron, atomic number 5. What’s the outermost electron in any 
one of the atoms? Why, that’s the 2p1 electron. That’s the kind of shorthand 
that scientists developed for naming the state of an electron. Each number, 
letter, and superscript number represents something:

 ✓ The first number is the principal quantum number. For the outermost 
electron in boron, the 2 in 2p1 means the principal quantum number, n, 
is 2.

 ✓ The letter stands for the angular-momentum quantum number, l. And 
here’s where it gets tricky. Historically, the different values of l have 
been assigned different letters, and here they are:

 • l = 0 → s

 • l = 1 → p

 • l = 2 → d

 • l = 3 → f
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 • l = 4 → g

 • l = 5 → h

  and so on. So in 2p1, the p stands for an angular-momentum quantum 
number of 1.

 ✓ The superscript indicates the electron’s quantum number for the 
angular momentum. Thus, the first electron you add to an atom is the 
1s1 electron, and the next is the 1s2 electron.

  The next electron is the 2s1 electron, followed by the 2s2 electron. Then 
come the 2p1, 2p2, 2p3, and so on electrons.

So in terms of the full electron configuration, you can denote a boron atom 
(Z = 5) as 1s22s22p1, where each electron is in the lowest available energy state.

To better see how the shorthand relates to the quantum numbers, check out 
Figure 14-7, earlier in this chapter. The labels at the right show you how two 
electrons can fit in the 1s subshell (where n = 1, l = 0), two electrons fit in the 
2s subshell (where n = 2, l = 0), and six electrons fit in the 2p subshell (where 
n = 2, l = 1). If you were to draw more of the chart, you could see that because 
of the way the tree diagram branches off, two electrons fit in s subshells, six 
fit in p subshells, ten fit in d subshells, fourteen fit in f subshells, and so on.

Table 14-1 shows the states of the electrons for atoms with values of Z up to 
18. Remember that these electron configurations are for an atom in its lowest 
energy state. For example, the hydrogen atom has a single electron in the 1s 
state when it’s at its lowest energy. However, if the atom is excited, the elec-
tron would be in a higher shell and have non-zero angular momentum (quan-
tum number l).

Table 14-1 Electron Configurations for the First 18 Elements

Element Z Electron Configuration

Hydrogen 1 1s

Helium 2 1s2

Lithium 3 1s22s

Beryllium 4 1s22s2

Boron 5 1s22s22p

Carbon 6 1s22s22p2

Nitrogen 7 1s22s22p3

(continued)
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Table 14-1 (continued)

Element Z Electron Configuration

Oxygen 8 1s22s22p4

Fluorine 9 1s22s22p5

Neon 10 1s22s22p6

Sodium 11 1s22s22p63s

Magnesium 12 1s22s22p63s2

Aluminum 13 1s22s22p63s23p

Silicon 14 1s22s22p63s23p2

Phosphorous 15 1s22s22p63s23p3

Sulfur 16 1s22s22p63s23p4

Chlorine 17 1s22s22p63s23p5

Argon 18 1s22s22p63s23p6
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Chapter 15

Nuclear Physics and Radioactivity
In This Chapter
▶ Understanding nuclear structure

▶ Looking at the force holding protons and neutrons together

▶ Understanding alpha, beta, and gamma decay

▶ Measuring radioactivity

An atom’s electron structure (which I cover in Chapter 14) is what gives 
an atom its chemical properties. Elements act chemically depending on 

the outermost shell of electrons. But the electrons are only part of the story. 
You also have the nucleus, which is the subject of this chapter. The elec-
trons in an atom orbit around the relatively small but dense nucleus, and the 
nucleus makes up by far the most mass in an atom.

Although you don’t deal with the nucleus in general chemistry classes, you 
certainly do in physics. Physicists can probe the nucleus using subatomic 
particles, and as a result, people know a great deal about the nucleus. And of 
course, the nucleus is where the radioactivity of atoms is centered. So in this 
chapter, you explore the structure of the nucleus, examine the forces that 
hold protons and neutrons together, and find out what happens when other 
forces prevail and the atom undergoes radioactive decay.

Grooving on Nuclear Structure
The nucleus sits at the center of the atom. At one time, people thought it was 
completely solid, with all the positive charge in the atom concentrated in it. 
The nucleus was thought of as a tiny sphere, on the order of 10–15 meters.

 How small is 10–15 meters? Well, put another way, how big is 1015 meters? 
That’s about 10,000 times the distance to the sun, and 1 meter is to 1015 
meters what 10–15 meters is to 1 meter.

Scientists now know that picture is wrong; the nucleus has a great deal of 
structure. It’s made up of various nucleons, as Figure 15-1 shows. No doubt 
you’ve heard of the two types of nucleons — protons and neutrons:
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 ✓ Protons: Protons are tiny, positively charged particles of a miniscule 
mass, about 1.672 × 10–27 kilograms. Although that makes them sound 
small, they’re huge compared with the true lightweight of the atom, the 
electron, with a mass of 9.11 × 10–31 kilograms (so the proton is about 
1,800 times more massive than the electron). The charge of a proton is 
1.60 × 10–19 coulombs, exactly the same magnitude (although opposite in 
sign) as the electron’s charge. 

 ✓ Neutrons: Neutrons are electrically neutral particles that are more mas-
sive than electrons — and slightly more massive than protons. Neutrons 
have a mass of around 1.675 × 10–27 kilograms, compared with the pro-
ton’s mass of 1.672 × 10–27 kilograms.

 

Figure 15-1: 
An atomic 

nucleus.
 

 Note that neutrons are more massive than protons. In a way, you can almost 
think of neutrons as combinations of protons and electrons, which results in a 
neutral particle. Although that picture isn’t exact, neutrons can decay — and 
when they do, they produce a proton and an electron. 

So is the nucleus just a bundle of nucleons (neutrons and protons)? Are 
nuclei just spherical packs of nucleons? Pretty much. Experiments show that 
the nucleus has a roughly spherical structure and that it’s indeed made up of 
bundles of separate nucleons. So the image in Figure 15-1 is actually a pretty 
accurate one.

Now for a little chemistry: Sorting 
out atomic mass and number
The number of protons in an atom set the atomic number, Z, which tells 
you what kind of atom you’re dealing with. For example, if Z = 2, you have a 
helium atom. If Z = 6, you have a carbon atom. So that’s the main connection 
between chemistry and the nucleus: The atomic number of the atom deter-
mines which element you have.
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The number of neutrons in an atom, given the letter N, doesn’t affect most 
chemical processes. Chemically speaking, neutrons are inert.

Taken together, the number of neutrons and protons, N and Z, is the atomic 
mass number (or nucleon number), A:

A = N + Z

 So is the mass of an atom just A multiplied by the average mass of a nucleon 
(the average of a proton mass and a neutron mass)? Approximately, yes. I say 
approximately because some nuclei have unequal numbers of protons and 
neutrons, as I show you in the next section.

In terms of chemistry and the periodic table, you use a particular shorthand 
when indicating elements, like this: . That’s the symbol for standard 
carbon (C), which has six protons (Z = 6) and atomic mass number 12 
(A = 12).

 In general, the symbol used for an element is

where A is the element’s atomic mass number, Z is the atomic number, and 
X is the one- or two-letter symbol for the element (like H for hydrogen, He for 
helium, C for carbon, and of course, Os for osmium, as everyone knows).

Neutron numbers: Introducing isotopes
The atomic number of an atom determines the element you’re dealing with. 
So Z = 6 is carbon. But the number of neutrons, which don’t affect the chemi-
cal properties of an atom for the most part, can actually vary. Thus, you have 
two forms of carbon appearing in nature. The first form has 6 protons, of 
course, and 12 total nucleons (protons plus neutrons):

But some uppity carbon atoms — about 1.10 percent — have 13 nucleons, 
not just 12, so their symbol is
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These two forms of carbon are called isotopes of carbon, atoms of the same 
element that differ in the number of neutrons.

 Isotopes are often denoted with their atomic mass numbers, so the first 
carbon isotope, , is carbon-12, and the second, , is carbon-13. You may 
also see them denoted as C-12 and C-13 or even as C12 and C13.

So why do you see a symbol like this in the periodic table of the elements?

That’s because the atomic mass number in the periodic table, 12.011, is the 
average atomic mass number of all carbon atoms that occur naturally.

 The unit of measurement for atomic mass is the aptly named atomic mass unit 
(amu), which equals 1.66 × 10–27 kilograms. Hence, the average carbon nucleus 
has a mass of

The atomic mass unit is technically defined to be one-twelfth of the mass of a 
carbon-12 atom (that is, six protons, six neutrons, and twelve electrons com-
posing the atom). But this unit is a convenient scale to use for all atoms.

You may notice that an amu has slightly less mass than either nucleon, the 
proton or neutron, and wonder why. That’s because the mass of a nucleus 
has slightly less mass than the sum of the masses of its individual nucleons. 
You can understand this strange result because some mass goes into the 
binding energy to hold the nucleus together (a topic that’s coming up in the 
section “Hold on tight: Finding the binding energy of the nucleus”).

Weighing out a set number of atoms with moles
When the number of molecules or atoms is 
important, scientists can pull out another quan-
tity: the mole. You have 1 mole of a substance 
when you have a number of atoms or molecules 
that’s equal to Avogadro’s number, which 
equals about 6.022 × 1023.

Like the atomic mass unit, the mole is defined 
in terms of the carbon-12 atom: 1 mole of a sub-
stance is the quantity that has the same number 

of atoms (or molecules if it’s a molecular sub-
stance) as the number of atoms in 12 grams of 
carbon-12. When you have a mole, you have 
6.022× 1023 atoms (or molecules).

To get a mole of another element, find the ele-
ment’s atomic mass number and write the units 
as grams instead of atomic mass units. Then 
weigh it out.
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Not all isotopes are equally stable. As you see later in “Understanding Types 
of Radioactivity, from α to γ,” nuclei can undergo radioactive decay and alter 
the number of nucleons in the nucleus. 

Boy, that’s small: Finding the radius 
and volume of the nucleus
Experiments have shown that the radius of the nucleus is about equal to the 
following, where A is the number of nucleons (protons and neutrons):

r ≈ (1.2 × 10–15 m)A1/3

For example, what’s the radius of the nucleus of the carbon-12 atom, the 
most common form of carbon? Plugging numbers in the formula gives you 
the following:

r ≈ (1.2 × 10–15 m)(12)1/3 ≈ 2.7 × 10–15 m

So how small is that? Comparing the radius of a carbon-12 nucleus to 1 meter 
is like comparing the thickness of a dime to the distance between Earth and 
Saturn. In other words, the nucleus is pretty small.

The nucleus is a roughly spherical bundle of nucleons, so its volume is roughly 
equal to the volume of a sphere. The volume is approximately given by

Substituting in 1.2 × 10–15 meters × A1/3 — the value of r that was experimen-
tally determined — you get this approximate expression for the volume of an 
atom’s nucleus:

Calculating the density of the nucleus
What’s the density, ρ, of the nucleus? Well, density equals mass divided 
by volume:
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The mass of a carbon-12 atom is 12 amu (atomic mass units). An amu is 
about 1.66 × 10–27 kilograms, so

You can figure out the volume of the carbon-12 nucleus as roughly

where r = 2.7 × 10–15 meters (as you calculate in the preceding section). 
Therefore, you can say that

Therefore, the density is

And that’s dense — a pea-sized piece of pure nuclear material would weigh 
about 27,000,000,000 metric tons.

The Strong Nuclear Force: Keeping 
Nuclei Pretty Stable

If you think about it, nuclei shouldn’t hold together at all. After all, a nucleus 
can contain dozens of protons, as well as neutrons, which means that there 
are dozens of strong positive charges very, very, very close to each other. 
And you know what happens when positive charges get close to each other: 
They repel each other. At very close range, that repelling force can get to be 
huge. Because the size of the nucleus is about 10–15 meters, the outward force 
on the protons in a nucleus is enormous. 

So why don’t nuclei fly apart immediately? Why don’t they explode? This 
section explains the forces at work.
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Finding the repelling force 
between protons
You can calculate the electrostatic force exerted by two protons on each 
other in a nucleus with this equation (from Chapter 3):

where k is the constant 8.99 × 109 N·m2/C2, q1 and q2 are the two charges, and 
r is the distance between the charges.

Plugging in the numbers and assuming the distance between protons is 
10–15 meters gives you

So that’s 230 newtons — about 52 pounds! That’s an incredible force between 
two protons, so why on Earth don’t they fly apart?

Holding it together with the strong force
The protons in a nucleus don’t fly apart because as strong as the electro-
static force is, the strong nuclear force is even stronger. The strong force 
works between nucleons, and it’s what keeps the nucleus together.

The strong force is one of only four fundamental forces discovered (so far) 
in nature. You know all about two of those forces already — the gravitational 
force and the electrostatic force. The other two are the strong force and the 
weak force. I discuss the strong force in this section.

The limits of the strong nuclear force
 The strong force binds nucleons in the nucleus together, and it’s constantly 

fighting against the electrostatic force. So if the strong force is so strong, why 
doesn’t it take over everything — why doesn’t everything just collapse into 
one gigantic nucleus? That’s just the thing: The strong force is effective only 
over very small distances — about 10–15 meters. Beyond that range, it’s effec-
tively zero. It’s almost as if its express purpose is to hold nuclei together and 
nothing more.
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Here’s where it gets interesting: The strong force pulls nuclei together 
(there’s no repelling strong force), and the electrostatic force pushes them 
apart. There comes a time when you get so many protons together in the 
nucleus that their mutually repelling force starts to overcome the strong 
force. This happens because the strong force has such a limited range — 
nucleons have to be essentially right next to each other to be bound by the 
strong force. But the electrostatic force is long-range, so while one proton is 
bound to two or three other nucleons by the strong force, as you add more 
protons, they all gang up on the first proton with their electrostatic forces.

There comes a time when the electrostatic repulsion between protons 
overcomes the strong force holding them in place and bingo — the nucleus 
explodes. And that’s exactly where radioactivity comes from: The electro-
static repulsion of many protons overcomes the attraction of the strong force 
holding them together.

The stabilizing power of neutrons
What about neutrons? They don’t repel other nucleons, and they can exert 
the strong attractive force, so shouldn’t it follow that the more neutrons you 
have in a nucleus, the more stable it is? And that’s what happens for the most 
part: As the atomic number (the number of protons) increases, you need 
more and more neutrons to keep the nucleus stable. Adding more neutrons 
helps separate the volatile protons while exerting a stabilizing strong force.

So as nuclei get bigger and bigger — as you add more and more protons — 
you need to add even more neutrons to keep things stable. The biggest atom 
that’s generally considered stable is . That’s bismuth (yes, the stuff that 
makes antidiarrhea medicines work), with 83 protons. It takes 126 neutrons 
to hold things in place.

 Because of the details of how the strong force works, protons and neutrons 
like to pair up. If you get too many neutrons, then there’s a kind of imbalance 
in the energies between the neutrons and protons, and the nucleus becomes 
unstable. So nuclei with roughly equal numbers of protons and neutrons are 
the most stable — though because of the repulsion between the protons, 
larger nuclei need relatively more neutrons. The result is quite a narrow range 
of stable combinations of neutrons and protons, where their numbers are 
roughly equal, but the relative number of neutrons increases slightly as the 
total number of nucleons increases.

As you go higher in atomic number (to higher values of Z), you don’t get 
enough neutrons to hold the nucleus together forever. For example, uranium, 
which is famously radioactive, has Z = 92. So now you know where radioactiv-
ity comes from. Pretty cool, eh?
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Hold on tight: Finding the binding 
energy of the nucleus
The strong force is what holds nuclei together — which means that separat-
ing the nucleons in a nucleus takes work. That work is called the binding 
energy of the nucleus.

 How do you find the binding energy of a nucleus without taking it all apart? 
You can be clever about this and measure a nucleus’s mass compared to the 
masses of its constituent nucleons. That is, when you find the mass of the 
nucleus, the nucleus is less massive than the sum of the nucleons that go into 
it (so you could say that a nucleus is less than the sum of its parts). Why? 
Because some mass went into the binding energy of the nucleus.

 The difference between the masses of all the nucleons separately and the final 
nucleus is called the mass defect of the nucleus, which has the symbol Δm. So 
the mass defect of a nucleus is

where Σmnucleons is the sum of the masses of the nucleons and mnucleus is the 
mass of the nucleus after all the nucleons are put together.

So how can you find the binding energy from the mass defect? You may recall 
that Einstein said that E0 = mc2, so the binding energy of a nucleus is equal to

Ebinding = Δmc2

where Δm is the mass defect of the nucleus.

Finding the mass defect
Check out some numbers. For example, grab a standard helium atom: . 
The nucleus of that atom has two protons and two neutrons, and experiments 
show that it has a mass of 6.6447 × 10–27 kilograms. What is its mass defect?

You can find the mass defect of a nucleus with . Here, 
that becomes

ΔmHe-4 = 2mproton + 2mneutron – mnucleus 

Like any good physicist, you know that

 ✓ The mass of a proton is 1.6726 × 10–27 kilograms

 ✓ The mass of a neutron is 1.6749 × 10–27 kilograms
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So you have the following:

ΔmHe-4 = 2(1.6726 × 10–27 kg) + 2(1.6749 × 10–27 kg) – (6.6447 × 10–27 kg)

 ≈ 0.0503 × 10–27 kg = 5.03 × 10–29 kg

That’s very small indeed.

Calculating the binding energy
What’s the binding energy of the standard helium atom? That equals Ebinding 
= Δmc2. The mass defect, m, is 5.03 × 10–29 kilograms, and the speed of light is 
approximately 3.00 × 108 meters per second, so you have the following:

Ebinding = (5.03 × 10–29 kg)(3.00 × 108 m/s)2

  ≈ 4.53 × 10–12 J

What’s that in electron-volts, eV? An electron-volt is the energy needed to 
push one electron through 1 volt of electric potential, and 1 electron-volt is 
1.60 × 10–19 joules, so the binding energy of He-4 is

So the binding energy is 28.3 million electron-volts. And because the proton 
has the same charge as the electron, 28.3 million electron-volts is the energy 
you get by letting a proton drop through 28.3 million volts. 

Put another way, it takes 24.6 eV to pull an electron away from an atom of 
He-4. It takes more than 1 million times that amount to pull a proton out of 
the He-4 nucleus. That’s the strong force at work — and it has to overcome 
the repulsive force of two protons at extremely close distance as well.

Understanding Types of Radioactivity, 
from α to γ

Radioactivity happens when atomic nuclei explode, and as you know, radio-
activity can have some nasty side effects, such as radiation poisoning. But 
where others prudently refused to tread, physicists eagerly jumped in.

Radioactivity is the process by which unstable nuclei disintegrate. Such 
nuclei don’t go quietly — they emit nuclear fragments and other various 
 particles. In addition to fragments of nuclei, physicists recorded three types 
of particles emitted by radioactive elements:
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 ✓ α (alpha) particles

 ✓ β (beta) particles

 ✓ γ (gamma) particles

As you may expect (because these are the first three letters of the Greek alpha-
bet), these particles were named in the order of their discovery. They’re all 
particles created by nuclear decay and so are fit topics for your study.

Physicists know how to handle such particles — with a magnetic field, which 
bends the trajectory of such particles and lets researchers determine more 
about the particles’ mass and charge. Figure 15-2 shows such a setup. A 
radioactive source, enclosed in a lead container, is placed at the bottom 
of the apparatus. Nuclear decay byproducts — some charged, some not — 
shoot out of the container and, passing through a magnetic field, then hit a 
screen or detector to be recorded.

 

Figure 15-2: 
A radio-
activity 

experiment.
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α
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In their quest to understand nuclear reactions, nuclear physicists had these 
tools at their disposal:

 ✓ Conservation of total energy

 ✓ Conservation of charge

 ✓ Conservation of linear momentum

 ✓ Conservation of angular momentum

 ✓ Conservation of nuclear number
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In this section, I introduce you to nuclear decay for all three types of 
particles — alpha, beta, and gamma — and explain how some of these laws of 
conservation come into play.

Releasing helium: Radioactive 
alpha decay
When you’re talking about radioactivity, it’s hard not to talk about uranium, 
which is what comes to most people’s minds when the topic first pops up. 
Physicists found that a uranium-238 atom — U-238 for short — decays to 
thorium and an alpha particle. The nuclear reaction is denoted this way (it’s 
something like the notation for chemical reactions):

Experiments like the one in Figure 5-2 eventually determined what the alpha 
particle is — it’s a helium nucleus! (Notice how the atomic mass number 
decreased by 4 and the atomic number, the number of protons, went down 
by 2.) So . Therefore, the U-238 decay becomes the following:

How much energy goes into the kinetic energy of the products of this decay 
(that is, the thorium atom and the alpha decay)? The kinetic energy would be 
the difference between the mass of U-238 and the byproducts of the decay, 
Th-234 and the alpha particle:

KE = mU-238 – mTh-234 – mHe-4

Looking up the mass of these atoms in atomic mass units, you get the 
following:

 ✓ Uranium-238: mU-238 = 238.0508 amu

 ✓ Thorium-234: mTh-234 = 234.036 amu

 ✓ Helium-4: mHe-4 = 4.0026 amu

So the kinetic energy equal to the mass defect released is 

mass defect = 238.0508 amu – 234.0436 amu – 4.0026 amu = 0.0046 amu
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A mass of 1 amu, from E0 = mc2, is equivalent to an energy of 931.5 million 
electron-volts (mega electron-volts, or MeV), so the kinetic energy released is

KE = (0.0046 amu)(931.5 MeV) ≈ 4.3 MeV

That kinetic energy is divided between the thorium atom and the 
alpha particle.

Charge and angular momentum are conserved as always. Note that linear 
momentum is also conserved, and because the thorium atom is about 60 
times the mass of the alpha particle, the alpha particle ends up with about 
60 times the speed of the thorium atom. Thus, alpha particles are the most 
prominent result of a lump of decaying U-238.

 Another conservation law is in action in nuclear reactions: the conservation 
of the total number of nucleons. Note how in U-238 decay, uranium has 238 
nucleons, and it decays into thorium, with 234 nucleons, along with the alpha 
particle with 4 nucleons. The sum of the nucleons on each side of the reaction 
is the same. You can use this to check whether the reaction is possible or to 
find out whether something is missing from your reaction.

 Mass is not conserved in U-238 decay, because the end product has less mass 
than the original uranium atom. However, total energy is conserved, so if you 
take into account E0 = mc2, where mass and energy are equivalent, then mass-
energy is conserved.

Gaining protons: Radioactive beta decay
Besides the alpha particle, another particle that’s produced by radioactive 
decay is the beta particle. For example, thorium (which you see in uranium 
decay in the preceding section) can decay itself. In particular, the  iso-
tope of thorium decays to  (Pa is protactinium, a metallic element). This 
decay also produces a beta particle (β), so the reaction is written like this:

What on Earth is a β particle? After long experimentation, physicists deter-
mined it was an electron (or in some radioactive decays, the electron’s posi-
tively charged antimatter counterpart, the positron). 

So how do you denote an electron in format like ? An electron contains 
no neutrons and certainly no protons. In fact, its charge is opposite to a 
proton, so perhaps you should designate it as . And that’s exactly what 
physicists did, so the decay of  looks like this:
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 Notice what’s happening in beta decay. The net atomic number — that is, the 
number of protons, Z, actually increases as a result of the decay. How does 
that happen? It happens because a neutron decays into a proton and an elec-
tron (the beta particle). It’s rare to have neutrons decay, but it does happen. 
Also note that when the electron is written as , then the sum of the upper 
and lower indexes on both sides of the reaction are the same.

Emitting photons: Radioactive 
gamma decay
Just like the whole atom can be in an excited state, the nucleus of an atom 
can exist in excited states. That is, just as electrons can be in higher orbits 
and jump down to lower orbits, emitting a photon (as I explain in Chapter 14), 
so can nucleons.

Does that mean that a nucleus can emit a photon, just like orbital electrons? 
Yes, it certainly can. For example, radium (Ra) nuclei can fire off a photon. 
You start with the excited form of the radium nucleus, which is denoted with 
an asterisk (*):

Then you decay to an unexcited form of the radium atom, along with a 
photon, which is a gamma ray (that is, a very high-power photon), which is 
denoted with the Greek letter γ like this:

And there you have it — excited radium emitting a high-power photon and 
turning into normal radium.

 When nuclei emit high-energy photons, it’s called gamma decay. Note that in 
gamma decay, the atomic number of the nucleus doesn’t change — no charge 
is carried away by an emitted particle. Instead, a photon shoots out of the 
nucleus with a lot of energy and at high frequency.

How high is the frequency? Well, take a look. Say that you have the radium 
gamma decay . The emitted photon has an energy of 0.186 
mega electron-volts. For a photon, the energy is

E = hf
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where h is Planck’s constant and f is the frequency of the photon. So solving 
for f, you have

To plug in E, you need to find the energy of the photon (gamma ray) in 
joules. You know that the photon’s energy is 0.186 mega electron-volts, or 
1.86 × 105 electron-volts. There are 1.60 × 10–19 joules in 1 electron-volt, so 
do the conversion:

So you have 2.98 × 10–14 joules to work with. That corresponds to a photon 
frequency of

So the frequency is about 4.49 × 1019 s–1. What’s the wavelength of the gamma 
ray? To find the wavelength, λ, you can use the relation c = λf, or

So you have

In other words, the wavelength is about 6.68 × 10–3 nanometers. And that puts 
it at about one hundred-thousandth of the wavelength of visible light.

Grab Your Geiger Counter: Half-Life 
and Radioactive Decay

A radioactive element is one with an unstable nucleus. The nucleus decays 
into a more stable one and, in the process, produces a byproduct, such as 
an electron or photon (that is, a beta particle or gamma ray). You can detect 
this byproduct with a clever device called a Geiger counter. With a Geiger 
counter, you can take a single atom of a radioactive element and sit and wait 
to detect when it decays.
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However, physicists found that you can’t predict when a radioactive atom 
will decay — it’s random. But because some elements decay more quickly 
than others, you can say that they’re likely to decay sooner rather than later.

 When you have a great number of unstable atoms together, then there’s a defi-
nite average rate of decay. If you put your Geiger counter to the atoms, you 
detect a certain number of decays per second. This rate falls with time, 
because there are fewer and fewer unstable nuclei left to decay.

Say you go to the corner store and come back with a pound of radium,  
(don’t try this at home — radium caused a lot of radiation poisoning in early 
physicists). Unwrapping your radium, you note that it’s decaying slowly into 
radon, Rn, like this:

Hmm, you think — radon is a gas. How long will this sample of radium last? 
To figure that out, you need to understand the concept of half-life, a conve-
nient way to discuss the rate of decay. In this section, you look at the con-
cepts of half-life and radioactivity.

Halftime: Introducing half-life
The rate at which you see radioactive nuclei decaying is in proportion to the 
number of atoms you have. This means that a radioactive substance decays 
exponentially. Exponential decay reduces the amount of radioactive sub-
stance by a constant fraction in equal time intervals.

 When working with exponential decay problems, a convenient time interval to 
use is the time that the sample takes to reduce by half. Half-life tells you how 
long it takes for half of a given number of atoms to decay. (Any other fraction 
would work, but half is nice and simple, and it immediately gives you a good 
feel for how fast your sample is decaying.)

The half-life of  is about 1,600 years, so in 1,600 years half your sample 
will have decayed into , so you’ll have half of your  left in your 
sample. In another 1,600 years you’ll be left with (1⁄2)2 of the original amount 
of  in your sample. So as you can see, you don’t have much to worry 
about — the radium in your sample will be around for quite some time.

What are the radioactive half-lives of various isotopes? Table 15-1 gives you a 
sampling in case you’re interested.
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Table 15-1 Half-Lives of Radioactive Substances

Element Isotope Half-Life

Polonium 1.64 × 10–4 seconds

Krypton 3.15 minutes

Radon 3.83 days

Strontium 29 years

Radium 1.6 × 103 years

Carbon 5.73 × 103 years

Uranium 4.47 × 109 years

For example, , radon, is a radioactive gas created when radium decays. 
It turns out that radon can collect in the basements of houses, and it’s a 
health worry because it’s radioactive.

Say that you have a radon test done in your house that finds some radon 
gas — an estimated 100,000,000 (or 1.0 × 108) atoms. If you seal the house 
against more radon getting in, how many atoms are left after 31 days?

 Here’s how to find out how much of a sample is left using half-lives:

 1. To find out how many half-lives have passed, divide the amount of 
time that’s passed by the length of a half-life.

  The half-life of radon is 3.83 days, so 31 days is equal to about eight 
half-lives:

  

 2. Multiply 1⁄2 by itself, once for each half-life, to find the fraction of the 
sample that’s left.

  You can write the number of half-lives as an exponent on 1⁄2. That means 
that the radon sample will have decayed until

  

  of the original sample is left.
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 3. To get the number of radioactive atoms remaining, multiply the frac-
tion from Step 2 by the number of atoms you started with.

  Only 1⁄256 of the original sample remains, or

  

  So after a month, about 390,000 atoms will be left.

Decay rates: Introducing activity
How do you quantify the number of decays per second from some radioac-
tive sample? You use the activity of the sample, which is given as the number 
of decays per second:

where ΔN is the change in the number of radioactive nuclei in the time Δt. 
The negative sign indicates that the number of radioactive nuclei falls with 
time, so ΔN is negative (making the activity positive). Defined like this, the 
activity simply measures the rate at which the radioactive nuclei are decaying.

Radioactivity is measured in becquerels (Bq) — 1 becquerel equals one decay 
per second. You can also measure activities in curies (Ci), where

1 Ci = 3.70 × 1010 Bq

The rate at which the nuclei are decaying is in proportion to the number of 
nuclei you have, so the activity is also equal to

where λ is called the decay constant.

 The decay constant makes it easy to figure out how much of a sample you 
have left after a certain time with this equation:

N = Noe
–λt

where N is the number of atoms you have currently, No is the number of 
atoms you started out with, λ is the decay constant, and t is the time.

 You can relate half-life, T1/2, to the decay constant like this:
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where ln means natural log (log to the base e). This also means that

For example, take a radon gas sample, . What is its activity to start and 
after 31 days? To start, say you have N = 1.0 × 108 atoms, and the half-life of 
radon is 3.83 days, which is 3.31 × 105 seconds. First find the decay constant:

Then use the radioactivity equation. The initial activity equals the following:

Activity = λN

 = (2.09 × 10–6 s–1)(1.0 × 108 atoms)

 = 209 s–1

So the initial activity is 209 becquerels.

After 31 days, about 8.1 half-lives, that number is cut down by a factor of 256 
(as you find out in the preceding section); this means the final activity is 
209 ÷ 256 ≈ 0.82 becquerels. Quite a change!
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The Part of Tens
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In this part . . .

Here, you see a rundown of ten physics experiments 
that changed the world. From measuring the speed 

of light to discovering radiation, it’s all right here. I also 
give you a chapter covering the best online tools for 
 problem-solving in physics.
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Chapter 16

Ten Physics Experiments 
That Changed the World

In This Chapter
▶ Understanding light

▶ Getting subatomic and radioactive

▶ Confirming special relativity

Physics has a way of changing the world, and this chapter considers ten 
physics experiments that did just that. Okay, so “changed the world” is 

a pretty bold statement, but it’s true. You can see the impact of these discov-
eries in a number of ways. Taking the high-minded approach, you can appre-
ciate how they revealed more of the universe’s astonishing beauty. If you’re 
a little more down-to-earth, you can observe how they’ve changed the way 
people think about the world and its possibilities.

And if you’re really grounded, you can consider the technological advances 
born of the ten experiments in this chapter. From the treatment of cancer 
with Marie-Curie’s radiation to night-vision goggles from the photoelectric 
effect, the practical applications have been numerous, and they’re still 
increasing. In fact, the possible uses for quantum mechanics are just begin-
ning to develop — sci-fi technology like teleportation and quantum comput-
ing may yet become more than a dream.

Regardless of how you look at these experiments, they were big in the world 
of physics. So go ahead — pull up a lab stool and read on. (And if you’re 
inspired to try some radiation experiments of your own, don’t forget your 
lead shielding.)

24_538067-ch16.indd   34124_538067-ch16.indd   341 6/1/10   10:22 PM6/1/10   10:22 PM



342 Part V: The Part of Tens 

Michelson’s Measurement 
of the Speed of Light

In the 19th century, people already knew that light was fast, but no one knew 
precisely how fast. In 1878, physics instructor Albert Abraham Michelson 
thought up an experiment to determine the speed of light. His setup dramatically 
improved upon previous estimates and signaled the beginning of his career — 
a pretty impressive one, at that. His work accompanied the transition from 
classical to modern physics.

Michelson placed a mirror far away from his setup and then devised a rotating 
eight-sided mirror that he sent a beam of light toward. The light bounced off 
one of the mirror’s eight sides, sped to the far-away mirror, came back, and hit 
another side of the eight-sided mirror to go into a detector.

By making the rotating mirror (going at about 256 revolutions per second) 
synch with the arrival of the light from the far mirror, he was able to measure 
very short time intervals. So Michelson came up with a measurement of the 
speed of light: His value was 299,944 kilometers per second, plus or minus 
51 kilometers per second. Current estimates put the speed of light at about 
299,792 kilometers per second. Not bad, eh? You can read more on the speed 
of light in Chapter 8.

Young’s Double-Slit Experiment: 
Light Is a Wave

The nature of light was a mystery in the early 19th century. No one really 
understood what it was — was it similar to something in other parts of 
nature, or was it something special, all its own?

Light has wave-like (as well as particle-like) qualities. Thomas Young did 
the first experiments to make the wave-like nature of light clear more than 
200 years ago. In 1803, Young performed his famous double-slit experiment, 
which showed that light rays could interfere with other light rays in much 
the way ripples in a pond could interfere with other ripples. His paper, 
“Experiments and Calculations Relative to Physical Optics,” became world 
famous. You can read about light wave interference in Chapter 11.
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Jumping Electrons: The 
Photoelectric Effect

The photoelectric effect clarified the picture of light, exposing the particle-like 
side of its nature. The photoelectric effect refers to the observation that you can 
aim a beam of light at a sheet of metal, and that metal will emit electrons.

The photoelectric effect was explained in terms of light as waves, but two 
things puzzled physicists:

 ✓ Electrons were emitted immediately from the metal, even in low-intensity 
light (it was thought that light waves needed to build up the energy 
imparted to electrons).

 ✓ The kinetic energy of the emitted electrons was independent of the light 
intensity (it was thought that the more light, the more energy would be 
given to each emitted electron).

Albert Einstein, in a Nobel Prize–winning performance, explained both ques-
tions by introducing the idea of photons — that is, particles of light. Because 
each emitted electron was given its energy by a discrete light packet — a 
photon — electrons could be emitted from the metal as soon as light was 
shone on it. And because the electron’s kinetic energy came from the photon, 
that kinetic energy was independent of the intensity of the light. For more on 
the photoelectric effect, flip to Chapter 13.

Davisson and Germer’s Discovery 
of Matter Waves

The Davisson-Germer experiment confirmed the wave nature of electrons in 
1927. That was quite a revolutionary discovery at the time, and it was a con-
firmation of the de Broglie hypothesis of matter waves. This hypothesis states 
that not only do waves sometimes behave like particles, but particles also 
sometimes behave like waves. For instance, a particle can be considered to 
have a wavelength related to its momentum.

In their experiment, Clinton Davisson and Lester Germer sent a beam of elec-
trons onto a crystal of nickel. They proved that electrons that reflected from 
the highly smooth surface created an interference pattern — just as light 
waves would do — on a screen.
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The electrons’ wave-like nature was showing here: The crystalline structure 
of the nickel was diffracting the electrons, and the observed interference pat-
tern was a sensational discovery — electrons behaved as waves!

Röntgen’s X-rays
People can generate X-rays, the light rays that are so important in medicine, in 
vacuum tubes. You use a voltage to accelerate electrons to a very high speed; 
then the electrons hit a metal target and generate X-rays. Although such tubes 
were used in experiments earlier, German physics professor Wilhelm Conrad 
Röntgen was the first to report on X-rays in the late 19th century.

On November 8, 1895, Röntgen discovered X-rays when experimenting with 
such a vacuum tube. He was amazed by their penetrating power and their 
ability to produce clear images on photographic paper. He wrote a report 
titled “On a new kind of ray: A preliminary communication” in December 1895 
and submitted it to the Würzburg Physical-Medical Society for publication. 
Röntgen got the very first Nobel Prize in Physics for the discovery.

Curie’s Discovery of Radioactivity
In 1897, Marie Curie began her doctoral work and decided to investigate the 
“uranium rays” first discovered by Henri Becquerel. Using samples of radioactive 
substances, she and her husband, Pierre, eventually settled on pitchblende (a 
form of the mineral uraninite), which gave very strong photographic exposures 
through opaque paper. Eventually, they refined the pitchblende and discovered 
a new, radioactive element, polonium, named after Marie Curie’s native Poland.

After chemically isolating the radioactive elements, the Curies observed that 
the elements were depleting while producing stable elements — principally 
helium and lead. They thereby discovered how the new “rays,” superficially 
similar to the X-rays, were of a very different nature. These “rays” were a 
product of radioactive decay — the atomic process of the decay of unstable 
atoms into stable products.

The Curies also discovered a second radioactive element, radium, not long 
afterward. For her work, Marie Curie won not one but two Nobel Prizes, in 
Physics and Chemistry. You can read more about radioactivity in Chapter 15.
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Rutherford’s Discovery 
of the Atom’s Nucleus

In the early 20th century, the reigning model of the atom was the English 
plum pudding model, which viewed the atom as a sort of positively charged 
paste in which electrons were embedded like plums.

Physicist Ernest Rutherford (who had already won a Nobel Prize in 1908 for his 
radioactivity work) dispelled that picture. In 1911, he aimed a beam of alpha 
particles at a thin gold foil. He discovered that contrary to plum pudding expec-
tations, many alpha particles were scattered, even bouncing back entirely.

Rutherford said that the shock of observing the scattered alpha particles was 
like firing a “fifteen-inch shell” at tissue paper and having it come back and hit 
you. Clearly, positive charges were concentrated in the atom — electrons were 
too light to cause alpha scattering — and that was how the atomic nucleus was 
discovered. You can read more about this experiment in Chapter 14.

Putting a Spin on It: The Stern-Gerlach 
Experiment

In 1922, Otto Stern and Walther Gerlach conducted an experiment to deter-
mine whether particles had an intrinsic angular momentum. They set up 
a magnetic field in such a way that a stream of charged particles traveling 
through it would not be deflected unless they possessed at least a small 
magnetic moment, which quantifies the torque (turning force) experienced 
by a magnetic dipole moving through a magnetic field. The particles would 
possess a magnetic moment only if they had an intrinsic spin. And sure 
enough, the beam of particles split into two beams, indicating that charged 
particles (electrons in this case) did indeed have an intrinsic angular 
momentum, which Stern and Gerlach called spin.

This picture has significantly changed physicists’ view of the electrons in atoms, 
because it adds another quantum number, spin, to each electron, doubling the 
number of electrons that can have the same other three quantum numbers. (The 
other quantum numbers — principal, orbital, and magnetic — specify orbital 
states of electrons in atoms.) Check out Chapter 12 for more info on quantum 
physics.
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The Atomic Age: The First Atomic Pile
The first human-made, self-sustaining nuclear chain reaction occurred in 1942. 
Physicists started the reaction on December 2 of that year, beneath the west 
stands of Stagg Field, Chicago, beside a huge stack of carbon and uranium 
bricks comprising an atomic pile (the term people used before someone coined 
nuclear reactor). The time was 3:25 p.m. As control rods, which dampened the 
reaction, were withdrawn, the level of activity in the pile increased and held.

The atomic age was born. Since that time, interestingly, scientists found that 
Mother Nature beat us to the punch — not just with nuclear reactions inside 
stars, which are well-known, but also here on Earth. Self-sustaining nuclear 
reactions have been found in natural uranium deposits: Mother Nature’s 
own atomic piles.

Verification of Special Relativity
Albert Einstein’s theory of special relativity makes many claims that on the 
face of it seem pretty outlandish — length contraction? Time dilation? (See 
Chapter 12 for details.) But such effects have been borne out by experiment.

Take, for example, a mu meson, or muon for short. You find this particle in 
cosmic rays and in particle accelerators like those at CERN, a lab near Geneva, 
Switzerland. Muons have a very short lifetime — about one millionth of a 
second, so they’re not around very long before they decay. On the other 
hand, subatomic particles can travel very fast — far faster than humans have 
been able to go so far — and you can observe relativistic effects when they do.

In particular, muons traveling at very high speeds last a lot longer than they 
should given their short lifetimes. That’s because compared to the lab frame 
of reference, time really is dilated for the muons. Bruno Rossi and David Hall 
first observed the dilated lifetimes of muons in 1941, and many other experi-
ments have also confirmed special relativity in great detail.
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Chapter 17

Ten Online Problem-Solving Tools
In This Chapter
▶ Using online calculators

▶ Finding energy, reactance, frequency, half-life, and more

Physics requires a lot of number crunching, and you can find help for 
that online. Many specialized physics calculators are available, and this 

chapter takes a look at some of the best. Just plug in your numbers, and the 
calculator can add your vectors, calculate frequency and wavelength, and 
even give you some quick numbers on relativity or radioactive decay.

Vector Addition Calculator
Vector addition can be very time-consuming. What’s the direction of the net 
force from three charges on a test charge? What’s the force’s magnitude?

Now you can get some help with the vector addition calculator. Just enter the 
magnitude and direction (in degrees) of up to ten vectors, click the Calculate 
button, and you’re there — the vector sum is displayed in two text boxes: 
One holds the vector sum’s magnitude, and the other holds its direction. 
Simple.

You can find the vector addition calculator at

www.1728.com/vectors.htm

Centripetal Acceleration (Circular 
Motion) Calculator

If you have an electron orbiting in a magnetic field (see Chapter 4), you can 
calculate its centripetal acceleration using a lot of math — or you can let the 
centripetal acceleration calculator do it for you.
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Select what you want to calculate — centripetal acceleration, radius, or 
velocity — from a drop-down box and then enter the other two values. The 
calculator does the rest.

You can find the centripetal acceleration calculator at

easycalculation.com/physics/classical-physics/
centripetal-acceleration.php

Energy Stored in a Capacitor Calculator
This calculator gives you the energy stored in a capacitor. You enter the 
capacitance in farads and the charge in coulombs; then click the Calculate 
button. The calculator displays the stored energy in the capacitor in joules.

You can find this calculator at

easycalculation.com/physics/electromagnetism/
stored-energy-electrical.php

Electrical Resonance Frequency 
Calculator

When you have a circuit with an inductor, a capacitor, and a voltage source 
that alternates at a given frequency, you can have resonance if you tune the 
frequency just right — that is, you can find a frequency that maximizes cur-
rent in the circuit because the inductive reactance and the capacitive reac-
tance cancel each other out (see Chapter 5 for details).

Now you can use an online calculator to find the resonance frequency of a 
circuit. You can also solve for the capacitance needed for resonance (given 
a voltage source frequency and an inductance), or you can solve for the 
needed inductance (given a voltage source frequency and a capacitance).

Just click the button indicating what you want to solve for — resonance 
frequency, capacitance, or inductance — click buttons to indicate which 
units you’re using for each measurement (for instance, click either Henrys or 
MilliHenrys for inductance), enter the two numbers you know, and click the 
Calculate button; the number you want to solve for is displayed. Cool.

You can find the resonance frequency calculator at

www.1728.com/resfreq.htm

25_538067-ch17.indd   34825_538067-ch17.indd   348 6/1/10   10:23 PM6/1/10   10:23 PM



349 Chapter 17: Ten Online Problem-Solving Tools

Capacitive Reactance Calculator
This calculator lets you figure the capacitive reactance of a capacitor, given a 
certain capacitance and a frequency. Just enter the two values and click the 
Calculate button, and you’re done.

You can find this calculator at

easycalculation.com/physics/electromagnetism/
capacitive-reactance.php

Inductive Reactance Calculator
This calculator lets you calculate the inductive reactance of an inductor. You 
enter the inductance values and the frequency of the voltage source, click the 
Calculate button, and presto! The inductive reactance appears in a text box.

This calculator is at

easycalculation.com/physics/electromagnetism/
inductive-reactance.php

Frequency and Wavelength Calculator
This calculator lets you convert from frequency to wavelength or wavelength 
to frequency for light. Just enter a value in the Input box and click one of the 
buttons:

 ✓ Buttons if you know wavelength: cm, feet, meters

 ✓ Buttons if you know frequency: Hz, KHz, MHz

The calculator displays the corresponding value — for example, if you enter 
a value and click Hz, the calculator takes the value you entered as a fre-
quency in hertz and displays the corresponding wavelength.

This calculator is at

www.1728.com/freqwave.htm
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Length Contraction Calculator
When you have speeds near the speed of light, you get length contraction. 
You can figure out what the length contraction is with the length contraction 
calculator. Just enter the fraction of the speed of light you’re going (as a deci-
mal) and click the second box. The length contraction factor appears in that 
box. Simple.

Find this calculator at

hyperphysics.phy-astr.gsu.edu/hbase/relativ/tdil.html

You can check out Chapter 12 for more info on length contraction and 
Einstein’s theory of special relativity.

Relativity Calculator
The online relativity calculator specializes in calculations involving the rela-
tivity factor:

The calculator changes units and solves for velocity or the relativity factor as 
you like. You enter a value in the Input box and then click one of these buttons:

 ✓ Miles/second: The calculator finds the relativity factor.

 ✓ Kilometers/second: The calculator finds the relativity factor.

 ✓ c = 1: The calculator finds the relativity factor using your input as a 
fraction of c.

 ✓ Factor of change: The calculator finds the speed needed to give you the 
input relativity factor.

You can find the relativity calculator at

www.1728.com/reltivty.htm
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Half-Life Calculator
Working with radioactive decay is always a little tricky. Given a beginning 
amount of material and a half-life, how much material is left after a certain 
time? (Half-life is the time required for the amount of radioactive material to 
reduce by half through radioactive decay — see Chapter 15 for details.)

You can use the half-life calculator to find out. Click a button depending on 
what you want to solve for:

 ✓ Time (years)

 ✓ Half-life (years)

 ✓ Beginning amount (grams)

 ✓ Ending amount (grams)

Then enter the numbers as prompted. You can find the half-life calculator at

www.1728.com/halflife.htm
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Index

• A •
absolute reference frame, 252
absolute rest, 252
AC circuit

basic description of, 11
capacitor, 91–95
inductor, 95–99
resistor, 87–91
root-mean-square voltage, 

89–90
acceleration

angular, 31
basic knowledge of, 29–30
centripetal, 251, 347–348
defi ned, 30
particle accelerator, 263
speed, 29–30

addition
relativistic speeds, 270–273
and signifi cant fi gures, 27
vector, 29, 347

adiabatic constant, 134
air, index of refraction, 178
algebra, 24–25
alpha decay, 330–331
alpha particle, 296–297, 329
alternating electric fi eld 

(E fi eld)
linearly polarized wave, 157
magnetic fi eld, 157–159
oscillating charge, 156
polarity of potential 

difference, 157
radio wave, 160

alternating voltage
basic description of, 11
connecting to resistor, 

90–91
Ohm’s law for, 88–89
phase diagram of, 104
root-mean-square, 89

aluminum, 318

amplitude
sound wave, 128–129
vibration, 147
wave, 118–119

amu (atomic mass unit), 322
angle

Brewster’s, 185–186
critical, 183
phase, 123
of shock wave, 153–154
trigonometry, 25–26

angle of declination, 64
angle of incidence, 206
angle of refl ection, 206
angular acceleration, 31
angular magnifi cation, 

202–203
angular momentum

Bohr model of atom, 
303–304

conservation of, 329
Stern-Gerlach experiment, 

345
angular momentum quantum 

number, 
310–311, 316

angular velocity, 31
antenna, 160–161, 223
antimatter, 265
antinode, 145
Archimedes’s burning 

mirrors, 211
argon, 318
atom

Bohr model of, 301–306
as building block of matter, 

295
carbon, 322
covalent bond, 315
electron transition in, 

307–308
free atoms is gases, 298–299
ionic bond, 315
line spectra of, 298–299

multi-electron, 314–316
planetary model of, 296–300
plum pudding model of, 

296–297
relating quantum physics 

and, 309–313
atomic mass number, 321
atomic mass unit (amu), 322
atomic number, 314–316, 320
atomic pile, 346
average power, 89
Avogrado’s number, 322

• B •
B (boron), 111, 317
B fi eld. See magnetic fi eld
Balmer series of hydrogen, 

299–301
bar magnet, 10, 62
beat decay, 331–332
beat frequency, 147–148
becquerel (Bq), 336
beryllium, 317
beta particle, 329
blackbody radiation

basic description of, 15–16
intensity versus 

wavelength, 274
modern physics, 15
perfect blackbody, 274
Planck’s constant, 275
Rayleigh prediction, 274

blueshift, 258
Bohr, Niels (Bohr model 

of atom)
allowed Bohr radii,  303–304
allowed energy for 

hydrogen, 305
allowed energy for lithium 

atom, 306
angular momentum, 

303–304
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Bohr, Niels (continued)
basic description of, 301
fi nding allowed energies of 

electrons in, 302–303
observed atomic 

spectra, 302
boron (B), 111, 317
boundary condition, 139, 141
Bq (becquerel), 336
Brewster’s angle, 185–186
bulk modulus, 136

• C •
C (coulombs), 38
calculator

capacitive reactance, 349
centripetal acceleration, 

347–348
energy stored in a 

capacitor, 348
frequency, 349
half-life, 351
inductive reactance, 349
length contraction, 350
relativity, 350
resonance frequency, 348
vector addition, 347
wavelength, 349

capacitance, 92
capacitive reactance

calculator, 349
defi nition of, 92
effective resistance, 93
frequency, 93

capacitor
AC circuit, 91–95
alternating voltage and 

current in, 94
alternating voltage source 

connected across, 92
amount of charge stored in, 

57–58
coulombs per volt (C/V), 58
defi ned, 91
energy calculation, 59, 348
MKS unit for, 58
preserving power, 95
as source of electric 

current, 59

carbon
atom, 322
electron confi guration, 317
half-life, 335

center of curvature, 190, 210, 
212–213

centi- prefi x, 23
centripetal acceleration

calculator, 347–348
frames of reference, 251

CGS (centimeter-gram-
second) system

converting between MKS 
and CGS, 21–22

metric units of 
measurement, 20

charge, 329. See also electric 
charge

charge density, 49
charged object, 47
chemical bond, 315
chemical reaction, 315
chlorine, 318
Ci (curies), 336
circuit

basic knowledge of, 32–33
junction rule, 33
Kirchoff’s rule, 32–33
rules of resistance, 32
with two loops, 32

circular motion
angular velocity, 31
basic knowledge of, 30–32
linear kinetic energy, 32
moment of inertia, 31
object traveling in, 30–31
tangential direction, 30

coherent light sources, 
222, 226–227

collector of electrons, 276
collision of electrons and 

photons, 282–285
color, 180–181
commutator, 77
compression, 117
Compton, Arthur (physicist)

Compton effect, 282–285
wavelength, 284–285

concave lens, 189, 193

concave mirror
center of curvature, 

212–213
object placement, 213–214

condensation, 127
conductor

defi ned, 42
electric fi eld inside, 50–51
valence electron, 44

conserved charge, 38
constant

adiabatic, 134
decay, 336
dielectric, 58–59
Planck’s, 275
Rydberg, 299, 306–307

constructive interference
light wave, 222–224, 228
sound wave, 141–142

contact, charging by, 41–42
control rod (in nuclear 

reactor), 346
converging lens, 188
conversion

conversion factor, 22–23
description of, 20
energy, 21–22
equal unit, 21–22
force, 21
length, 21
mass, 21
metric prefi xes, 23
between MKS and CGS 

system, 21–22
from one unit to another, 

22–23
power, 22
temperature, 24

convex lens, 188–189, 191
convex mirror, 215
coordinate system, 250–251
corrective lens, 200–201
cosine, 26
coulombs (C), 38, 44–45
Coulomb’s law, 44–45
coulombs per volt (C/V), 58
covalent bond, 315
critical angle, 183
Curie, Marie (discovery of 

radioactivity), 344
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curies (Ci), 336
current

basic description of, 11
in capacitor, 94–95
defi ned, 44
direction of, 44, 112
and impedance, 103–108
in inductor, 98, 100, 102–103
resonance frequency, 

109–110
in RLC circuit, 109–110
root-mean-square,  107–108

curved surface, 188
C/V (coulombs per volt), 58
cycle, wave, 119

• D •
Davisson, Clinton (discovery 

of matter waves),  
343–344

de Broglie, Louis
quantization of angular 

momentum, 308–309
wavelength, 285–288

decay constant, 336
decay rate, 336–337
decibel

intensity and decibels of 
common sound, 133

measuring sound in, 132–133
decimal point

scientifi c notation, 24
signifi cant fi gures, 27

decompression, 117
density

charge, 49
of nucleus, 323–324
speed of sound in liquid, 136
speed of sound in solid, 137

destructive interference
light wave, 224, 226, 228
sound wave, 141, 143

diamond, 178
dielectric

constant, 58–59
defi ned, 58
energy calculation, 59
between plates of parallel 

plate capacitor, 58

diffraction
basic description of, 15
equation, 240–241
grating, 241–243
Huygens’s principle, 236
light wave interference, 221
resolving power value, 

243–246
single-slit, 235–241
sound wave, 148–149

diffraction pattern, 237–240
digital signal, 223
diode, 111–112
distance, speed of sound 

calculation, 135
distorted image, 211
diverging lens, 189
division and signifi cant 

fi gures, 27
domain, magnetic, 63
Doppler effect

basic description of, 12
frequency of sound, 

151–152
moving toward source of 

sound, 149–150
the source of sound 

moving, 151
double-slit experiment 

(Young)
“Experiments and 

Calculations Relative 
to Physical Optics” 
(Young), 342

fi rst-order bright bar, 229
fringe, 229
getting an interference 

pattern, 227–228
predicting light and dark 

spots, 229–231
schematic for, 228–229
second-order bright bar, 229
zeroth-order bright bar, 229

• E •
E fi eld (alternating electric 

fi eld)
linearly polarized wave, 157
magnetic fi eld, 157–159

oscillating charge, 156
polarity of potential 

difference, 157
radio wave, 160

echo
boundary condition, 

139, 141
pressure fl uctuation, 140
refl ecting sound wave, 

139–141
refl ection of single pulse of 

pressure, 140
sound wave, 12
zero oscillation, 139

echolocation, 140
Einstein, Albert (physicist)

E = mc², 16
photoelectric effect, 

280, 343
special relativity, 

16, 249, 346
elastic medium, 117
electric charge

basic description of, 11, 37
charging by contact, 41–42
charging by induction, 42–43
conserved, 38
of electron, 38
force between charges, 39
measurement, 38
MKS and CGS units, 21
net charge, 38
and photocopiers, 40
point charge, 44
of proton, 38
repelling and attracting 

forces, 39
static electricity, 40–41

electric current. See current
electric dipole, 169
electric energy density, 170
electric fi eld

basic description of, 45–46
from charged object, 47
defi ned, 46
in electromagnetic wave, 

156–157, 160, 184–185
force on a charge in, 46
inside conductor, 50–51
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electric fi eld (continued)
newtons per coulomb 

(N/C), 46
between parallel plate 

capacitor, 48–50
positive test charge, 46
shielding from, 51
from two point charges, 

47–48
uniform, 48–50

electric fl ux, 167
electric motor

forces, current, and 
magnetic fi eld in, 77

torque, 78
electric permittivity of free 

space, 168
electric potential energy. 

See also voltage
basic description of, 52–53
electric fi eld, 10
electron-volt (eV), 55
equipotential surface, 56–57
force, 10
lightning voltage, 53
point charge, 54–55
work, 53–54

electrical inductor, 100
electricity

basic description of, 10
electric fi eld, 10
force between two 

charges, 10
static, 40–41

electromagnetic spectrum
basic description of, 13, 161
frequency and wavelength 

of light, 163–164
gamma ray, 163
infrared light, 162
microwave, 162, 169
radio wave, 162
ultraviolet light, 162
visible light, 162
X-ray, 163

electromagnetic wave
light as, 155–161
magnetic fi eld, 79
radio wave, 158–161

electron
confi guration, 316–318
discovery of, 296
electric charge of, 38
emitted instantly, 280
interference pattern of, 286
kinetic energy, 279–280
momentum, 283, 293
multi-electron atom, 

314–316
photon and electron 

collision, 282–285
quantum physics, 309–312
single-slit diffraction, 290
speed, 292–293
total energy, 302–303
transitions, 307–308
valence, 44, 315

electron-volt (eV), 55, 281
element symbol, 321
E = mc²

Einstein, 16
equation, 265
kinetic energy, 267–269
rest energy, 265–267

energy
of capacitor, 59
conversion, 21–22
converting between mass 

and, 265–266
converting to mass, 266
of dielectric, 59
energy stored in a capacitor 

calculator, 348
kinetic, 267–269
linear kinetic, 32
MKS and CGS units, 21
photon, 277
potential, 270
rest, 265–267
total, 267, 269–270
wave as transference of, 116

energy density
averaging, 172–174
electric, 170
electric and magnetic 

combined, 171–172
equation, 171
instantaneous energy, 

169–172

of light, 169–174
magnetic, 171–172
root-mean-square, 172
sun’s light on Earth, 173–174

energy level diagram, 
307–308

equation
algebra, 24–25
diffraction, 240–241
diffraction grating, 

242–243
E = mc², 265
energy density, 171
kinetic energy, 267–269
length contraction, 

261–262
magnifi cation, 22, 197–199, 

218–219
mirror, 216–219
with photoelectric effect, 

281–282
resolving power, 245
rest energy, 266
temperature conversion, 24
thin-lens, 194–197, 217
time dilation, 257–260

equipotential surface, 56–57
eV (electron-volt), 55, 291
event, special relativity, 

250, 253
“Experiments and 

Calculations Relative to 
Physical Optics” paper 
(Young), 342

• F •
F (farad), 58
Faraday, Michael (Faraday’s 

law)
basic description of, 12
inductor explained, 96–100
magnetic fl ux, 97–98

farsightedness, 200
ferromagnetic, 63
fi rst-order bright bar, 229
Fizeau, Armand (speed of 

light experiment), 165
fl at mirror, 205–206
fl uorine, 318

26_538067-bindex.indd   35626_538067-bindex.indd   356 6/1/10   10:23 PM6/1/10   10:23 PM



357357 Index

focal length
object between radius of 

curvature and, 192
object closer to lens than, 

192
object lens, 199–200
strength of lens, 189
thin-lens equation, 195

focal point
convex lens, 188
spherical mirror, 210

foot-pound-second (FPS) 
system, 20

force
basic knowledge of, 30
conversion, 21
between electric 

charges, 39
electric potential 

energy, 10
F = ma equation, 30
of gravity, 30
MKS and CGS units, 21
repelling and attracting, 39
torque, 31
between two charges, 10

Foucault, Leon (speed of 
light experiment), 165

FPS (foot-pound-second) 
system, 20

fraction, conversion factor, 
22–23

frames of reference,  
250–251

frequency
alternating voltage, 88
basic description of, 12
beat, 147–148
calculator, 349
capacitive reactance, 93
fundamental, 145
overtone, 145
photo, 277
resonance, 109–110, 147
resonance frequency 

calculator, 348
sound wave, 128
wave, 119
and wavelength of light, 

163–164
fundamental frequency, 145

• G •
G (gauss), 66
gamma decay, 332–333
gamma particle, 329
gamma ray, 163, 332
gases

free atoms in, 298–299
speed of sound in,  

134–136
gauss (G), 66
Geiger counter, 333–334
Geiger, Hans (Rutherford 

scattering experiment), 
296

general relativity, 252
Geological Survey of Canada 

Web site, 64
Gerlach, Walther (angular 

momentum experiment), 
345

Germer, Lester (discovery of 
matter waves), 343–344

glare, 187
glass, 178, 180–181
graph

standing wave, 144–145
wave, 121–122

gravity
force of, 30
general relativity, 252

ground state, 305

• H •
H (henries), 100
half-life

basic description of, 334
calculator, 351
carbon, 335
decay rate, 336–337
exponential decay 

problem, 334
how much a sample left 

using, 335–336
krypton, 335
polonium, 335
radioactivity, 17
radium, 334–335
radon, 335

strontium, 335
uranium, 335

Hall, David (muon 
experiment), 346

harmonics, 145–147
Heisenberg, Werner 

(uncertainty principle)
deriving the uncertainty 

relation, 289–292
uncertainty in electron 

diffraction, 288–289
uncertainty in position, 

given speed, 293
uncertainty in speed, 

292–293
helium

atomic mass unit, 330
electron confi guration, 317

helium nuclei, 296
henries (H), 100
Hertz, Heinrich

photoelectric effect, 276–277
radio wave breakthrough, 

160
hertz (Hz), 88, 119, 128
holographic image, 223
Holzner, Steven 

Quantum Physics For 
Dummies, 275

Huygens’s principle 
(diffraction), 236

hydrogen
allowed energy for (Bohr 

model of atom), 305
electron confi guration, 317
index of refraction for, 178
wavelengths of services of, 

299
hypotenuse, 25
Hz (hertz), 88, 119, 128

• I •
ice, 178
image

distorted, 211
interference in TV, 223
real, 188
virtual, 188–189, 193, 

207, 212
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impedance
fi nding, 105–106
phasor diagram, 104
total potential difference, 105

in phase, 222–223
incident wave, 143
index of refraction

according to wavelength, 
180–181

for air, 178
basic description of, 13
defi ned, 178
for diamond, 178
for glass, 178, 180–181
high to low, 233
for hydrogen, 178
for ice, 178
for liquid, 178
low to high, 233
of the medium, 179
for oxygen, 178
rainbow, separating 

wavelength, 180–181
ratio of speed of light, 

177–178
Snell’s law, 179–180
for water, 178

induction, 42–43
inductive reactance

calculator, 349
root-mean-square, 101

inductor
basic description of, 96
current lags voltage in, 102
Faraday’s law, 12, 96–100
root-mean-square 

voltage, 101
voltage induced by, 99–100

inertial motion, 252
inertial reference frame, 

251, 264
infrared light, 162
infrasonic, 128
insulator, 42–44
integrated circuit, 111
intensity

and decibels of common 
sounds, 133

power fl owing through unit 
area, 130

in terms of total power of 
sound wave, 132

threshold of hearing, 133
interference

beat frequency, 147–148
coherent light source, 222
constructive, 141–142, 

222–224, 228
destructive, 141, 143, 224, 

226, 228
diffraction, 221
harmonics, 145–147
identical waves going in 

opposite directions, 
143–144

principle of superposition, 
141, 223

resonance frequency, 147
single-slit diffraction, 

235–241
standing wave, 143
street light interference 

experiment, 238
thin-fi lm, 231–235
wave, 125

interference pattern
coherent light sources, 

226–227
defi ned, 125
double-slit arrangement, 

227–231
of electron, 286
fringe, 229

interferometer, 272
inverse sine, cosine, and 

tangent, 26
inverted pulse, 233
ionic bond, 315
isolated system, 38
isotope, 322

• J •
junction rule, 33

• K •
kilo- prefi x, 23
kinetic energy

basic description of, 52
electron, 279–280

equation, 267–269
total energy of, 269–270

Kirchoff’s rule, 32–33
krypton half-life, 335

• L •
lagging current, 102–103, 

106–108
law of refl ection, 216
lead, 94
leading current, 94–95, 

106–108
length

conversion, 21
MKS and CGS units, 21
vector, 28

length contraction
calculator, 350
equation, 261–262
proper length, 261–262
rest frame, 260
variable, 261
why and how length 

contracts, 259–261
lens

center of curvature, 190
concave, 189, 193
converging, 188
convex, 188–189, 191
corrective, 200–201
diverging, 189
farsightedness, 200
focal length, 189, 192
focal point, 188
how light passes 

through, 14
magnifi cation, 199–203
magnifying glass, 193
microscope, 201–203
nearsightedness, 200
objective, 199–200
optical axis, 190
radius of curvature, 

190, 192
ray diagram, 190–192
real image, 14
telescope, 199, 203
thin-lens equation, 

14, 194–197, 217
virtual image, 14
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light. See also speed of light
alternating electric fi eld 

(E fi eld), 156–161
diffraction, 15
electromagnetic spectrum, 

161–164
as electromagnetic wave, 

155–161
energy density, 169–174
frequency and wavelength 

of, 163–164
incoming side of lens, 195
index of refraction, 

177–181
infrared, 162
interaction with matter, 13
lens, 14
light colliding with light, 15
magnetic fi eld, 157–159
monochromatic, 276
outgoing side of lens, 195
partial refl ection, 184–186
particle nature of, 282–285
polarized, 182, 184–186
ray, 13, 176–177
ray diagrams, drawing, 

190–194, 212–216
refl ected, 13
refl ection, 182–186
refraction, 13–14
splitting, 227–231
ultraviolet, 162
visible, 162

light wave
basic description of, 12–13
electromagnetic 

spectrum, 13
point source, 176
speed of light, 12–13

light wave interference. 
See interference

lightning voltage, 53
light-year, 258
line object, 191
line source, 187
line spectra, 298–300
linear kinetic energy

circular motion, 32
conservation of, 329

linearly polarized wave, 157
liquid

index of refraction for, 178
speed of sound in, 136–137

lithium ion, 306
lithium, electron 

confi guration, 317
longitudinal wave

echo, 139
elastic medium, 117

loop antenna, 160
loop rule, 33
loudness, 12
luminiferous ether, 225
Lyman series of hydrogen, 299

• M •
magnesium, 318
magnetic angular 

momentum, 312
magnetic energy density, 

171–172
magnetic fi eld

basic description of, 
11, 65–66

charged particle in, 68–69
circular motion, 70–71
from current loop, 82–84
direction of, 62–63, 67–68, 

75–76, 80, 157–159
E fi eld, 157–159
from electric current, 79–83
Faraday’s law, 12
fi eld direction, 80–81
force on a current in, 75–76
light, 157–159
MKS system unit, 66
path of charge, 69–70
positive charge being 

pushed in, 69–70
proportionality, 80
radius of orbit, 71–73
right-hand rule, 67–68, 

75–76, 80, 159
solenoid, 84–86
from straight wire, 79–82
tesla unit, 66
wire and cable, 76

magnetic fl ux, 97–98
magnetic force

on a current in magnetic 
fi eld, 75–76

on electrical current, 74–78
magnitude of, 66–67
right-hand rule, 67–68

magnetic permeability of free 
space, 168

magnetic quantum number, 
311–312

magnetism
angle of declination, 64
bar magnet, 10, 62
basic description of, 11, 62
domain, 63
Earth’s poles, 64
electron loop, 62
ferromagnetic, 63
magnetic material, 62–63
magnetic pole, 63–65
Megnes (magnetism) 

legend, 61
MKS and CGS units, 21
paramagnetic, 63
permanent magnet, 62–63

magnifi cation
angular, 202–203
equation, 22, 197–199, 

218–219
lens, 199–203
thin-lens equation,  

194–197
magnifying glass, 193
magnitude

magnetic force, 66–67
vector, 28–29

Marconi, Guglielma 
(physicist), 160

Marsden, Ernest (Rutherford 
scattering experiment), 
296

mass
conversion of units, 21
converting between mass 

and energy, 265–266
E = mc², 16
MKS and CGS units, 21

mass defect, 327–328
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mass spectroscope, 73–74
matter

antimatter, 265
atom as building block of, 

295
defi nition of, 273

matter wave
Davisson-Germer 

experiment, 343–344
modern physics, 15

maxima of light, 241–242
Maxwell, James Clerk (speed 

of light), 12–13, 155, 
167–168

measurement
basic skill, 19
centimeter-gram-second 

(CGS) system, 20–22
conversion, 20–24
electric charge, 38
foot-pound-second (FPS) 

system, 20
meter-kilogram-second 

(MKS) system, 20–22
scientifi c notation, 24
signifi cant fi gures, 26–27

medium wave, 115, 117, 225
meter-kilogram-second 

(MKS) system
converting between MKS 

and CGS, 21–22
metric units of 

measurement, 20
metric prefi x, 23
mica, 59
Michelson, Albert (speed 

of light experiment), 
165–167, 225, 342

micro- prefi x, 23
microchip, 111
microscope, 201–203
microwave, 162, 169
milli- prefi x, 23
millivolt (mV), 99
mirror. See also refl ection

angle of incidence, 206
angle of refl ection, 206
concave, 212–215
convex, 215
curved, 14

equation, 216–219
fl at, 14, 205–206
magnifi cation equation, 

22, 218–219
mirror myth, left-right 

fl ip, 207
partial, 206
plane, 206–207
refl ected light, 14
refl ection basics, 205–209
size, 208–210
spherical, 210–211, 216
thin-lens equation, 217

MKS (meter-kilogram-
second) system

converting between MKS 
and CGS, 21–22

metric units of 
measurement, 20

modern physics
blackbody radiation, 

15, 274–275
nuclear physics, 17, 319–337
particle waves, 16–17, 

285–288
quantum mechanics, 

15, 309–318
radioactivity, 17, 328–337, 

351
special relativity, 

16, 249–272, 350
modulus, 136
mole, 135, 322
moment of inertia, 31
momentum

angular, 303–304, 345
electron, 283
inertial reference frame, 264
magnetic angular, 312
particle accelerator, 263
photon, 283
relativistic speed, 264
special relativity, 262–264
speed, 293
variable, 263

monochromatic light, 276
monofrequency sound, 130
Morley, Edward 

(interferometer 
experiment), 225

motion
inertial, 252
kinetic energy, 267–269
supersonic, 153

m/s (meters per second), 30
m/s2 (meters per second 

squared), 30
multiple-slit diffraction, 

241–243
multiplication and signifi cant 

fi gures, 27
muon (mu meson), 346
mV (millivolt), 99

• N •
nano- prefi x, 23
nanometer (nm), 118, 164
N/C (newtons per 

coulomb), 46
near point, 203
nearsightedness, 200
negative charge (–), 37
negative work, 53–54
neon electron confi guration, 

318
net charge, 38
neutral pion, 265
neutron

atomic mass number, 321
charge, 37
nucleus structure, 320
stabilizing power of, 326

neutron number, 321–323
Newton, Isaac

and modern physics, 15
newtons units of force, 30

newtons per coulomb 
(N/C), 46

nitrogen electron 
confi guration, 317

nm (nanometer), 118, 164
node (wave), 145
noninertial reference frame, 

251
normal mode, 145
n-type semiconductor, 

111–112
nuclear fi ssion, 17
nuclear fusion, 17
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nuclear number, 329
nuclear physics, 17
nuclear reaction, 329, 346
nucleus

binding energy of, 327–328
density of, 323–324
discovery of, 297
neutron, 320
nuclear force, 324–328
proton, 320
radius and volume of, 323
Rutherford scattering 

experiment, 296–297
strong nuclear force, 

325–326
structure of, 320

• O •
object

charged, 47
curved surface, 188
kinetic energy of, 268
line, 191
point source, 187
as source of light ray, 187

offset wave, 123
Ohm’s law

for alternating voltage, 88–89
resistor measured in 

ohms, 32
optical axis, 190
orbit, 301
orbital angular momentum 

quantum number, 
310–311

oscillating system, 110
out of phase, 94, 224
overtone, 145
oxygen

electron confi guration, 318
index of refraction for, 178

• P •
Pa (pascals), 130
parallel plate capacitor

dielectric between, 58
electric fi eld between, 48–50

equipotential surfaces 
between, 57

permittivity of free space, 49
paramagnetic, 63
partial mirror, 206
partial refl ection, 184–186
particle

alpha, 296, 329
beta, 329
gamma, 329
particle nature of light, 

282–285
wave nature of matter, 

285–288
particle accelerator, 263
particle theory of photon, 279
pascals (Pa), 130
Paschen series of 

hydrogen, 299
Pauli, Wolfgang (Pauli 

exclusion principle), 
314–316

peak voltage, 88
peak-to-trough, 222
perfect blackbody, 274
period

basic description of, 12
wave, 119

periodic disturbance, 12
permanent magnet, 62–63
permittivity of free space, 

49, 168
phase angle, 123
phasor diagram, 104
phosphorous

dope silicon with, 111
electron confi guration, 318

photocopier, as electric 
charge example, 40

photoelectric effect
calculations with, 281–282
Einstein, 280, 343
experimental apparatus 

measuring the, 276–277
photon

defi ned, 16
energy needed to pull 

electron out of metal, 
279–280

energy of, 277
frequency, 277
light frequency, 278
momentum, 283
particle theory of, 279
photon and electron 

collision, 282–285
turning mass into light, 267

pitch of sound, 12, 128, 
149–152

pitchblende, 344
plane mirror, 206–207
planetary model of atom

Bohr model of atom, 
301–306

collapsing atoms, 297–298
fi nding the nucleus from 

alpha particle, 296–297
line spectra, 298–300

plum pudding model, 
296–297

point charge
electric potential energy, 

54–55
force between charge 

calculation, 44
point source, 176, 187
polarity, 157
polarization

basic description of, 184
sunglasses glare, 187

polarized light
basic description of, 182
partial refl ection, 184–186
refl ecting at Brewster’s 

angle, 185–186
polonium half-life, 335
positive charge (+), 37
positron, 266, 331
postulate, 252–253
potential energy, 270. 

See also electric 
potential energy

power
conversion, 22
intensity, 130
resolving power value, 

243–246
power of ten, 23
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prefi x, 23
pressure

fl uctuation, 140
MKS and CGS units, 21

principal maxima (light), 242
principal quantum number, 

310, 316
principle of superposition, 

141, 223
proper length, 261–262
proper time interval, 255
proportionality, 80
proton

atomic mass number, 321
charge, 37
electric charge of, 38
nucleus structure, 320
repelling force between, 325

p-type semiconductor, 
111–112

pulse
compression and 

decompression, 117
rarefraction, 128

pure-tone sound, 130
Pythagorean theorem, 25

• Q •
quanta, 275
quantized system, 275
quantum mechanics, 15
quantum number

angular momentum, 
310–311, 316

magnetic, 311–312
magnetic angular, 312
number of quantum state 

confi guration, 312–314
principal, 310, 316
spin, 312, 345
states, 311

Quantum Physics For 
Dummies (Holzner), 275

• R •
radiation, blackbody

basic description of, 15–16
intensity versus 

wavelength, 274
modern physics, 15
perfect blackbody, 274
Planck’s constant, 275
Rayleigh prediction, 274

radii, 303–304
radio development, 160
radio signal, 120
radio wave

basic description of, 159
electromagnetic spectrum, 

162
electromagnetic wave, 158
loop antenna, 160
vertical antenna, 160

radioactivity
alpha decay, 330–331
alpha particle, 329
basic description of, 328
beta decay, 331–332
beta particle, 329
Curie discovery of, 344
decay rate, 336–337
gamma decay, 332–333
gamma particle, 329
half-life, 17, 333–335
modern physics, 17
nuclear reaction, 329
pitchblende, 344
types of, 17

radium
half-life, 334–335
radioactivity, 332

radius
of curvature, 190, 192, 210
and volume of nucleus, 323

radon half-life, 335
rainbow

color, 180–181
refl ection on, 184

rarefraction
pulse, 128
sound wave as vibration, 128

ray
line source, 187
object as source of, 187
point source, 176
representing a wave, 176
reversibility, 177
traveling in straight line, 

177
ray diagram, 190–192
Rayleigh, Lord (blackbody 

spectrum prediction), 
274

real image, 14, 188
redshift, 258
reference frame, 250–251
refl ected light

angle of incidence, 13
mirror, 14

refl ected wave, 143
refl ection. See also mirror

angle of, 206
law of, 216
partial, 184–186
in rainbow, 184
total internal, 182–184
wave behavior, 124–125

refraction. See also index of 
refraction

basic description of, 13–14
index of, 13, 177–181
wave behavior, 124

relativity calculator, 350. See 
also special relativity

relativity postulate, 252
repelling and attracting 

forces, 39
resistance

basic description of, 88
rules of resistance, 32

resistor
basic description of, 87–88
connecting alternating 

voltage source to, 90–91
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ideal, 88
in phase, 91
resistor measured in 

ohms, 32
voltage and current 

alternating in, 91
resolving power, 243–246
resonance frequency

amplitude of vibration, 147
calculator, 348
capacitor and inductor 

effects, 109
oscillating system, 110

rest energy
changing mass to energy/

energy to mass, 266
equation, 266
neutral pion, 265
positron, 266
turning mass into light, 267

rest frame, 260
right triangle, 25–26
right-hand rule, 67–68, 75–76, 

80–81, 159
RLC circuit

basic description of, 103
determining amount of 

leading or lagging, 
106–108

fi nding maximum current 
in, 109–110

impedance, 104–106
Röntgen, Wilhelm Conrad 

(discovery of X-ray), 344
root-mean-square

alternating voltage, 89–90
current, 107–108
energy density, 172
inductive reactance, 101

Rossi, Bruno (muon 
experiment), 346

rules of resistance, 32
Rutherford, Ernest

discovery of atom’s 
nucleus, 345

scattering, 296–297
Rydberg constant, 299, 

306–307

• S •
scattering (Rutherford), 296
scientifi c notation, 24
second-order bright bar 

(light), 229
semiconductor

basic description of, 
110–111

integrated circuit, 111
microchip, 111
n-type, 111–112
p-type, 111–112

series RLC circuit
basic description of, 103
determining amount of 

leading or lagging, 
106–108

fi nding maximum current 
in, 109–110

impedance, 104–106
shock wave, 152–154
silicon

doped (semiconductor), 111
electron confi guration, 318

sine wave, 26, 121–122
single-slit diffraction

diffraction calculation, 
240–241

diffraction pattern, 
237–240

for electrons, 290
Huygens’s principle,  236–237
interference, 235–236

SLAC (Stanford Linear 
Accelerator Center), 263

slowing time
blueshift, 258
equation, 257–260
light clock example, 254–255
proper time interval, 255
redshift, 258
shifting light frequency, 258
slow speed, 256
time measured by two 

observers, 255
variable, 256

Snell’s law, index of 
refraction, 179–180

sodium, 318
solar system, 297
solenoid

basic description of, 11
electromagnet, 79
magnetic fi eld, 84–86

solid, speed of sound in, 
137–138

sonar, 140
sonic boom, 152–153
sonogram, 140
sound

constant tone, 129
decibels, 132–133
echolocation, 140
infrasonic, 128
intensity, 130
monofrequency, 130
pure-tone, 130
speed of, 133–138
ultrasonic, 128
volume, 129

sound barrier, 153
sound wave

amplitude, 128–129
basic description of, 12
diffraction, 148–149
Doppler effect, 12, 149–152
echo, 12, 139–141
frequency, 128
human ear example, 128
intensity, 131–133
interference, 141–148
loudness, 12
measuring sound pressure 

in, 130–131
music example, 128
node, 145
pitch, 12
as vibration, 127–129

special relativity
basics of, 250–253
coordinate system, 

250–251
Einstein, 16, 249, 346
event, 250, 253
general relativity, 252
imaginative discussion, 249
inertial motion, 252
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special relativity (continued)
inertial reference frame, 251
length contraction, 259–262
modern physics, 16
momentum, 262–264
reference frame, 250–251
relativity postulate, 252
speed of light postulate, 

252–253
time dilation, 254–259
velocity, 270–273

spectroscope, 73–74
speed

electron, 292–293
transverse wave, 120–121
velocity and acceleration, 

29–30
wave, 120

speed of light
distance around the 

world, 164
failed experiment of, 164
Fizeau and Foucault 

experiment, 165
length contraction 

calculator, 350
Maxwell calculations, 

12–13, 155, 167–168
Michelson experiment, 

165–167, 225, 342
speed of light postulate, 

252–253
speed of sound

described, 133
in gases, 134–136
in liquids, 136–137
resistance to deformation, 

136
in solids, 137–138
stats, 134

sphere, 132
spherical mirror

Archimedes’s burning 
mirrors, 211

center or curvature, 210
distorted image, 211
focal point, 210
law of refl ection, 216
mirror equation, 216–219

radius of curvature, 210
uses for, 211

spin quantum number, 
312, 345

splitting light, 227–231
standing wave

destructive interference, 
143–145

graph, 144–145
incident wave, 143
normal mode, 145–146
refl ected wave, 143

Stanford Linear Accelerator 
Center (SLAC), 263

state, quantum number, 311
static change, 10
static electricity, 40–41
Stern, Otto (angular 

momentum experiment), 
345

strong nuclear force, 325–326
strontium half-life, 335
subtraction, 27
sulfur, electron 

confi guration, 318
sunglasses glare, 187
superposition principle, 141
supersonic motion, 153
symbol, element, 321

• T •
T (tesla), 66
tangent, 26
tangential direction, 30
technological 

advancement, 15
telescope, 199, 203
temperature conversion, 24
tesla (T), 66
thin-fi lm interference

accounting for changes in 
wave phase, 233

calculation, 233–235
sending light ray on 

different path, 231–232
thin-lens equation

calculation, 196
description of, 195

focal length, 195
image distance, 195
object distance, 195
real image, 14
virtual image, 14

Thomson, J.J. (electron 
discovery), 296

thorium
atomic mass unit, 330
radioactivity, 331

time dilation
blueshift, 258
Einstein, 1
equation, 257–260
light clock example, 

254–255
proper time interval, 255
redshift, 258
shifting light frequency, 258
slow speed, 256
time measured by two 

observers, 255
variable, 256

torque
electric motor, 78
moment of inertia, 31
turning force, 77

total energy
conversation of, 329
kinetic energy, 267, 269
potential energy, 270

total internal refl ection, 
182–184

total potential difference, 105
transverse wave

direction of travel of, 116
speed, 120–121

trigonometry, 25–26
TV signal, 223

• U •
ultrasonic sound, 128
ultraviolet light, 162
uncertainty principle 

(Heisenberg)
deriving the uncertainty 

relation, 289–292
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uncertainty in electron 
diffraction, 288–289

uncertainty in position, 
given speed, 293

uncertainty in speed, 
292–293

uniform electric fi eld, 48–50
United States Geological 

Survey Web site, 64
uranium

atomic mass unit, 330
half-life, 335
radioactivity, 330

• V •
valence electron, 44, 315
variable, 2
vector

addition, 29, 347
basic knowledge of, 28–29
length, 28
magnitude, 28–29
resolving into components, 

28–29
vector addition calculator, 347
velocity

angular, 31
basic knowledge of, 29–30
change in direction, 30
defi nition of, 29
special relativity, 270–273
speed, 29–30

vertical antenna, 160
vibration

amplitude, 147
sound wave as, 127–129

virtual image
basic description of, 14
concave lens, 189, 193
concave mirror, 212
convex lens, 188
plane mirror, 207

visible light, 162
vision, 200
voltage. See also alternating 

voltage; electrical 
potential energy

basic description of, 10

current leads the, 94
defi ned, 52
loop rule, 33
peak, 88
root-mean-square, 89–90, 

101, 107
sum of voltage around a 

loop, 33
volume

and radius of nucleus, 323
sound, 129

• W •
water, 178
wave. See also light 

wave; matter wave; 
sound wave

amplitude, 118–119
bulk movement, 116
cycle, 119
defi ned, 12
frequency, 119
graphing, 121–122
incident, 143
interference pattern, 125
linearly polarized, 157
longitudinal, 117, 139
medium, 115
modern physics, 16–17
offset, 123
out of phase, 224
peak-to-trough, 118, 222
period, 119
periodic disturbance, 12
in phase, 222–223
properties of, 117–121
ray representing a, 176
refl ected, 143
refl ection, 124–125
refraction, 124
shock, 152–154
sine, 121–122
speed, 120
standing, 143–145
as transference of energy, 

116
transverse, 116, 120–121

as traveling disturbance, 
115–116

wavelength
basic description of, 12
calculation, 120
calculator, 349
Compton (photons), 

284–285
de Broglie (matter), 285–288
frequency and wavelength 

of light, 163–164
index of refraction 

according to, 180–181
one-half, 228
peak, 118
trough, 118

Wb (weber), 99
wire loop, 97–98
work, 53–54
work function (WF), 280

• X •
x-axis, 25
xerography, 39
X-ray

electromagnetic wave, 163
Röntgen discovery of, 344

• Y •
y-axis, 25
Young, Thomas

double-slit experiment, 
227–231

“Experiments and 
Calculations Relative to 
Physical Optics” paper, 
342

Young’s modulus, 137–138

• Z •
zero oscillation, 139
zeroth-order bright bar 

(light), 229
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